svm c语言 二次开发,SVM分类器实现实例 - osc_fy7jy96p的个人空间 - OSCHINA - 中文开源技术交流社区...

本文探讨了在C语言中SVM分类器的二次开发问题,主要展示了在训练和验证过程中遇到的高分低效现象。通过调整LinearSVC和SVC的参数C和gamma,分析了它们对分类效果的影响。实验表明,尽管GridSearch找到了一组最优参数,但在实际应用中效果并不理想。接下来,文章将介绍离子群优化算法(PSO)作为参数调优的替代方案。
摘要由CSDN通过智能技术生成

我正在做一个关于SVM的小项目,在我执行验证SVM训练后的模型的时候,得到的report分数总是很高,无论是召回率(查全率)、精准度、还是f1-score都很高:

8abded1264333e113582bc3bcf1e5564.png

图1 分类器分数report

但是,对于训练的效果就非常差,差到连包含训练集的测试集都无法正确分类,如下图所示,左边是原图像,右边是分类图像,(我标注的标签样本是黄色区域与褐色区域),其中SVC的默认参数为rbf、C=1.0、gamma=“auto_deprecated”,LinearSVC的默认参数为:C=1.0、class_weight=none、dual=true、loss=“squard_hinge”:

25b0320cb9ad689b5359820841a978c8.png

a.原图

1b8129ad57f42e8f1b2903f2c62cd53f.png

b.SVC(default parameter)

f482b89d9692e6b3fd5554f4523a161d.png

c.LinearSVC(default parameter)

图2. 默认分类效果

由上文可以发现,分类器分类的效果很不好,为了进一步验证这个问题的原因,接下来我分别对LinearSVC和SVC进行参数调整:

1、LinearSVC参数调整

C:使用损失函数是用来对样本的分类偏差进行描述,例如:

由上文可以发现,分类器分类的效果很不好,为了进一步验证这个问题的原因,接下来我分别对LinearSVC和SVC进行参数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值