线性代数及其matlab应用课后题答案,线性代数课后习题答案全)习题详解.docx

PAGE

word文档 可自由复制编辑

前言

因能力有限,资源有限,现粗略整理了《工程数学 线性代数》课后习题,希望对您的了解和学习线性代数有参考价值。

第一章 行列式

1.利用对角线法则计算下列三阶行列式:

(1); (2); (3); (4).

解 (1)

==

(2)

(3)

(4)

2.按自然数从小到大为标准次序,求下列各排列的逆序数:

(1)1 2 3 4; (2)4 1 3 2;

(3)3 4 2 1; (4)2 4 1 3;

(5)1 3 … 2 4 … ;

(6)1 3 … … 2.

解(1)逆序数为0

(2)逆序数为4:4 1,4 3,4 2,3 2

(3)逆序数为5:3 2,3 1,4 2,4 1,2 1

(4)逆序数为3:2 1,4 1,4 3

(5)逆序数为:

3 2 1个

5 2,5 4 2个

7 2,7 4,7 6 3个

……………… …

2, 4, 6,…, 个

(6)逆序数为

3 2 1个

5 2,5 4 2个

……………… …

2, 4, 6,…, 个

4 2 1个

6 2,6 4 2个

……………… …

2, 4, 6,…, 个

3.写出四阶行列式中含有因子的项.

解 由定义知,四阶行列式的一般项为,其中为的逆序数.

由于已固定,只能形如□□,即1324或1342.对应的分别为

和为所求.

4.计算下列各行列式:

(1); (2); (3); (4)

(1)==

=0

(2) =0

(3)===

(4)=

==

5.证明: (1)=; (2)=;

(3);

(4);

(5).

证明

(1)

(2)

(3)

(4) =

=

=

=

=

(5) 用数学归纳法证明

假设对于阶行列式命题成立,即

所以,对于阶行列式命题成立.

6.设阶行列式,把上下翻转、或逆时针旋转、或依副对角线翻转,依次得

, ,,

证明.

证明

同理可证

7.计算下列各行列式():

(1),其中对角线上元素都是,未写出的元素都是0;

(2);

(3) ; 提示:利用范德蒙德行列式的结果.

(4) ;

(5);

(6),.

(1)

()

(2)将第一行乘分别加到其余各行,得

再将各列都加到第一列上,得

(3) 从第行开始,第行经过次相邻对换,换到第1行,第行经次对换换到第2行…,

经次行交换,得

此行列式为范德蒙德行列式

(4)

由此得递推公式:

(5)

=

(6)

8.用克莱姆法则解下列方程组:

解 (1)

;

(2)

()

9.有非零解?

解 , 齐次线性方程组有非零解,则

即 得

不难验证,当该齐次线性方程组确有非零解.

10. 有非零解?

齐次线性方程组有非零解,则

不难验证,当时,该齐次线性方程

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:深蓝海洋 设计师:CSDN官方博客 返回首页
评论
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值