python电影情感评论分析_python--电影评论文本情感分类

本文介绍了如何使用Python进行电影评论的情感分析,通过清理文本、使用Word2Vec模型训练词向量,进而进行情感分类。参考了Kaggle上的学习经验,并利用BeautifulSoup去除HTML标签,Nltk进行文本分句,最后使用gensim的Word2Vec模型进行词向量的训练。
摘要由CSDN通过智能技术生成

为了记录kaggle学习心得。

参考了大神文章。

1.http://www.cnblogs.com/lijingpeng/p/5787549.html

2.python机器学习及实战

from sklearn.datasets import fetch_20newsgroups

X, y = news.data , news.target

查看X的长度 , 以及X[0]的长度

print(len(X) ,len(X[0]),len(X[0][0]))

from bs4 import BeautifulSoup

import nltk ,re

news = fetch_20newsgroups(subset='all')

def news_to_sentences(news):    news_text = BeautifulSoup(news).get_text()

# 去掉HTML标签,拿到内容

tokenizer = nltk.data.load('tokenizers/punkt/english.pickle')

raw_sentences = tokenizer.tokenize(news_text)

sentences = []

for sent in raw_sentences:

sentences.append(re.sub('[^a-zA-Z]', ' ', sent.lower().strip()).split())

# 小写化所有的词,并转成词list用正则表达式取出符合规范的部分

return sentences

sentences = []

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值