计算机科技文献中 英文缩写CAD代表,计算机科技文献中,英文缩写 CAD 代表( )

本文主要涉及数学中的函数性质证明,包括奇偶性、单调性,以及在三角形几何中的应用。在一系列的数学问题中,如三角形的边角关系、面积计算和角度确定,展示了数学理论在解决实际问题中的作用。同时,讨论了数列的单调性及其在构造容器过程中的应用,并通过函数极限的严格定义和圆锥容器体积的计算,进一步阐述了连续性和微积分的基本概念。
摘要由CSDN通过智能技术生成

计算机科技文献中,英文缩写 CAD 代表( )

更多相关问题

设函数f(x)满足:(1).f(0)=0;(2)x≠0时,其中a,b,c为常数,且|a|≠|b|.证明:f(x)是奇函数.

在△ABC中,已知,则角A的值为()

在钝角△ABC中,a=1,b=2,则最大边c的取值范围是______.

在钝角△ABC中,a=1,b=2,则最大边c的取值范围是______.

在中,角所对的边分别为,且满足,。(1)求的面积; (2)若,求的值。

设数列{xn}是正数列,且.试证明:数列{xn}从某一项起一定单凋减少(即从该项起有xn+1<xn).

把半径为R的一圆形铁皮剪去一个中心角为a的圆扇形,然后将剩余部分做成一个无底的圆锥形容器,将这个容器的体

已知函数的部分图象如下图所示,(Ⅰ)求函数f(x)的解析式;(Ⅱ)在△ABC中,角A,B,C对的边分别为a,b,c,若f(x)在x∈[4

(1)设f(x)在(-∞,+∞)内有定义.证明:f(x)+f(-x)是偶函数;f(x)-f(-x)是奇函数; (2)证明:在[-a,a](a>0)上有定

在△ABC中,角A、B、C所对边的长分别为a、b、c,若a2+b2=2c2,则cosC的最小值等于______.

若△ABC的三个内角满足sinA:sinB:sinC=5:12:13,则△AB形状一定是______角形.

在△ABC中,角A,B,C的对边分别为a,bc,且。(1 )求的值;(2)若,求△ABC面积的最大值。

数列极限的严格定义中,N是不是ε的函数?

在△ABC中,已知a2+b2=c2+2ab,则C=______.

的三内角所对边的长分别为,若,则角的大小为[ ]A.B.C.D.

不单调的函数是否一定不存在反函数?

若f(x-1)=x2-x,则f(x)= () (A)x2+x (B)x(x-1) (C)(x-1)2-(x-1) (D)(x+1)(x-2)

设 当a,b取何值时,f(x)在(-∞,+∞)上连续.

求下列函数的定义域: (6) (7)

设数列{xn}是正数列,且.试证明:数列{xn}从某一项起一定单凋减少(即从该项起有xn+1<xn).

把半径为R的一圆形铁皮剪去一个中心角为a的圆扇形,然后将剩余部分做成一个无底的圆锥形容器,将这个容器的体

设函数f(x)满足:(1).f(0)=0;(2)x≠0时,其中a,b,c为常数,且|a|≠|b|.证明:f(x)是奇函数.

给出数列的一般项如下,观察每一个数列的变化趋势,判断哪些数列收敛,哪些数列发散;如果数列收敛.指出其极限.

设0≤f(x)≤1,且对任意x、y∈[0,1]有|f(x)-f(y)|≤|x-y|,任取x1∈[0,1]定义 (n=1,2,…) 证明:{xn)收敛于[0,1]内

在钝角△ABC中,a=1,b=2,则最大边c的取值范围是______.

如果.是否必有?反之,如果是否必有?

设数列{xn}是正数列,且.试证明:数列{xn}从某一项起一定单凋减少(即从该项起有xn+1<xn).

求下列函数的定义域: (6) (7)

在△ABC中,若a2+b2<c2,且sinC=32,则C=______°.

给出数列的一般项如下,观察每一个数列的变化趋势,判断哪些数列收敛,哪些数列发散;如果数列收敛.指出其极限.

设数列{xn}是正数列,且.试证明:数列{xn}从某一项起一定单凋减少(即从该项起有xn+1<xn).

f(x)、g(x)都在R上定义,f(x)是单调增加函数,对任何x∈R,又有f(x)≤g(x).证明:f[f(x)]≤g[g(x)]对任何x∈R成立.

在△ABC中,角A,B,C的对边分别为a,b,c,若,则角B的值为[]A.B.C.或D.或

证明方程x3-9x-1=0恰有三个实根.

设 当a,b取何值时,f(x)在(-∞,+∞)上连续.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值