计算机科技文献中,英文缩写 CAD 代表( )
更多相关问题
设函数f(x)满足:(1).f(0)=0;(2)x≠0时,其中a,b,c为常数,且|a|≠|b|.证明:f(x)是奇函数.
在△ABC中,已知,则角A的值为()
在钝角△ABC中,a=1,b=2,则最大边c的取值范围是______.
在钝角△ABC中,a=1,b=2,则最大边c的取值范围是______.
在中,角所对的边分别为,且满足,。(1)求的面积; (2)若,求的值。
设数列{xn}是正数列,且.试证明:数列{xn}从某一项起一定单凋减少(即从该项起有xn+1<xn).
把半径为R的一圆形铁皮剪去一个中心角为a的圆扇形,然后将剩余部分做成一个无底的圆锥形容器,将这个容器的体
已知函数的部分图象如下图所示,(Ⅰ)求函数f(x)的解析式;(Ⅱ)在△ABC中,角A,B,C对的边分别为a,b,c,若f(x)在x∈[4
(1)设f(x)在(-∞,+∞)内有定义.证明:f(x)+f(-x)是偶函数;f(x)-f(-x)是奇函数; (2)证明:在[-a,a](a>0)上有定
在△ABC中,角A、B、C所对边的长分别为a、b、c,若a2+b2=2c2,则cosC的最小值等于______.
若△ABC的三个内角满足sinA:sinB:sinC=5:12:13,则△AB形状一定是______角形.
在△ABC中,角A,B,C的对边分别为a,bc,且。(1 )求的值;(2)若,求△ABC面积的最大值。
数列极限的严格定义中,N是不是ε的函数?
在△ABC中,已知a2+b2=c2+2ab,则C=______.
的三内角所对边的长分别为,若,则角的大小为[ ]A.B.C.D.
不单调的函数是否一定不存在反函数?
若f(x-1)=x2-x,则f(x)= () (A)x2+x (B)x(x-1) (C)(x-1)2-(x-1) (D)(x+1)(x-2)
设 当a,b取何值时,f(x)在(-∞,+∞)上连续.
求下列函数的定义域: (6) (7)
设数列{xn}是正数列,且.试证明:数列{xn}从某一项起一定单凋减少(即从该项起有xn+1<xn).
把半径为R的一圆形铁皮剪去一个中心角为a的圆扇形,然后将剩余部分做成一个无底的圆锥形容器,将这个容器的体
设函数f(x)满足:(1).f(0)=0;(2)x≠0时,其中a,b,c为常数,且|a|≠|b|.证明:f(x)是奇函数.
给出数列的一般项如下,观察每一个数列的变化趋势,判断哪些数列收敛,哪些数列发散;如果数列收敛.指出其极限.
设0≤f(x)≤1,且对任意x、y∈[0,1]有|f(x)-f(y)|≤|x-y|,任取x1∈[0,1]定义 (n=1,2,…) 证明:{xn)收敛于[0,1]内
在钝角△ABC中,a=1,b=2,则最大边c的取值范围是______.
如果.是否必有?反之,如果是否必有?
设数列{xn}是正数列,且.试证明:数列{xn}从某一项起一定单凋减少(即从该项起有xn+1<xn).
求下列函数的定义域: (6) (7)
在△ABC中,若a2+b2<c2,且sinC=32,则C=______°.
给出数列的一般项如下,观察每一个数列的变化趋势,判断哪些数列收敛,哪些数列发散;如果数列收敛.指出其极限.
设数列{xn}是正数列,且.试证明:数列{xn}从某一项起一定单凋减少(即从该项起有xn+1<xn).
f(x)、g(x)都在R上定义,f(x)是单调增加函数,对任何x∈R,又有f(x)≤g(x).证明:f[f(x)]≤g[g(x)]对任何x∈R成立.
在△ABC中,角A,B,C的对边分别为a,b,c,若,则角B的值为[]A.B.C.或D.或
证明方程x3-9x-1=0恰有三个实根.
设 当a,b取何值时,f(x)在(-∞,+∞)上连续.
本文主要涉及数学中的函数性质证明,包括奇偶性、单调性,以及在三角形几何中的应用。在一系列的数学问题中,如三角形的边角关系、面积计算和角度确定,展示了数学理论在解决实际问题中的作用。同时,讨论了数列的单调性及其在构造容器过程中的应用,并通过函数极限的严格定义和圆锥容器体积的计算,进一步阐述了连续性和微积分的基本概念。

被折叠的 条评论
为什么被折叠?



