MINIST手写数字识别——06.总结
训练之后,检查模型的预测准确度。用 MNIST 训练的时候,一般 softmax 回归模型的分类准确率为约为 92.64%,多层感知器为98.15%,卷积神经网络可以达到 99.01%。
应用模型
可以使用训练好的模型对手写体数字图片进行分类,下面程序展示了如何使用训练好的模型进行推断。
生成预测输入数据
infer_3.png 是数字 3 的一个示例图像。把它变成一个 numpy 数组以匹配数据feed格式。
import os
import numpy as np
import tensorflow as tf
from PIL import Image # 导入图像处理模块
import matplotlib.pyplot as plt
# 打印 infer_3.png 这张图片
filename = 'infer_3.png'
img=Image.open(os.getcwd() + '/images/' + filename)
plt.imshow(img)

def load_image(file):
im = Image.open(file).convert('L')
im = im.resize((28, 28), Image.ANTIALIAS)
im

本文总结了MINIST手写数字识别实验,包括softmax回归、多层感知器和卷积神经网络模型的训练与应用。卷积神经网络模型在MNIST数据集上的分类准确率高达99.01%。通过实例展示了如何使用训练好的模型进行手写数字图像的预测,并解释了模型效果提升的关键在于卷积层的特性。最后,强调了理解深度学习模型基本流程的重要性。
最低0.47元/天 解锁文章

5290

被折叠的 条评论
为什么被折叠?



