3.4.1 院系简介
芝加哥大学位于美国国际金融中心芝加哥,1890年由石油大王约翰·洛克菲勒创办,是世界著名私立研究型大学。该校素以盛产诺贝尔奖得主而闻名,常年位列各个大学排行榜世界前十。截至2017年,共有97位诺贝尔奖得主在芝大工作或学习过,位列世界第四。
推荐理由:世界一流名校,转专业申请友好。
3.4.2项目详解
Master‘s Program in Computer Science (MPCS)
•就业导向,晚上上课,Hyde Park校区
•9-Course MS in Computer Science Program: 9个月毕业
•12-Course MS in Computer Science Specialization Program: (15个月毕业),可以更进一步选择方向:software engineering, mobile computing, data analytics, and high-performance computing
Pre-Doctoral MS in Computer Science
•12门课程,研究导向
•需要有CS背景
•为申请博士作准备
申请要点
•GRE Quantitative: 80th percentile and above
•GMAT Quantitative: 70th percentile and above
•TOEFL 90+
•IELTS7.0(单项7.0)
•对转专业相对友好
•对编程和数学有背景要求,具体如下
Programming Topics:
1.Data types (native and derived)数据类型(原生和派生)
2.Operators, precedence, and expressions运算符,优先级和表达式
3.Assignment and statements分配和语句
4.Control flow (conditionals and iteration)控制流(条件和迭代)
5.Functions, return types, and parameters函数,返回类型和参数
6.Recursion递归
7.Console and file I/O控制台和文件I/O
1.Logic: propositional logic; quantifiers. 逻辑:命题逻辑;量词。
2.Mathematical reasoning: methods of proof, direct proof and indirect proof. Mathematical induction and strong induction.
数学推理:证明方法,直接证明和间接证明。数学归纳法和强归纳法。
3.Counting: methods of counting; permutations, combinations, binomial theorem, pigeonhole principle, inclusion-exclusion.
计数:计数方法;排列,组合,二项式定理,鸽子洞原理,包含-排除。
4.Discrete probability: discrete probability spaces; conditional probability and independence; Bernoulli trials, Bayes’s theorem, random variables and expected value; variance, geometric and binomial distributions.
离散概率:离散概率空间;条件概率与独立性;伯努利试验、贝叶斯定理、随机变量和期望值;方差,几何分布和二项分布。
5.Asymptotic notation.
渐进符号
6.Recurrences and methods of solving recurrences. 递归及解递归的方法
7.Graphs: simple graphs, isomorphism, paths, trees. 图:简单图,同构,路径,树。
8.Modular arithmetic, divisibility, prime numbers; GCD and Euclid’s algorithm, Fermat’s little theorem模算术,可分性,素数;GCD和欧几里德算法,费马小定理