叉乘证明贝祖定理_谈方琳定理

本文属于本专栏第三类主题:水论文

本文给出谈方琳定理:如何看待 15 岁女生谈方琳参加世界顶尖科学家大会?她的研究成果含金量有多高? 的叙述和证明。

基础知识

对于正整数

若正整数
既能整除
也能整除
则称
的一个公约数。最大的公约数称为最大公约数,记作
或者
我们不加证明地指出,最大公约数能被任何一个公约数整除。例如,

求最大公约数的方法有多种。最大公约数可以通过把两个数分解为素数的乘积得到,例如

因此
但对于比较大的数,素分解的计算是困难的,因此这并不是最好的方法。

辗转相除法,是解决最大公约数计算问题的最好方法。辗转相除法的操作方式如下:

1,把

中较大的数除以较小的数。不妨设
能整除
则结果
计算完成。若非如此,则可以得到带余除式:
其中
是正整数,

2.把

的值设定为
的值设定为
回到第一步。

利用辗转相除法,我们总能在有限步骤内完成计算,得到的

就是我们要求的最大公约数。

例如,我们求51和36的最大公约数。

因此

贝祖定理和贝祖数

以上辗转相除法求最大公约数的步骤可以写成一系列的除式:

最后,

由上述一系列除式的倒数第二行得知

再由倒数第三行,得知

代入上式得

继续像这样,代入倒数第四行,倒数第五行……就可以不断地得到:

其中

都是整数,并且我们规定

这样,我们证明了,存在整数

使得
这个结果称为贝祖定理,相应的
称为
的一组贝祖数。

顺便一提,

的选择不是唯一的。例如,若
是一组贝祖数,则
也是,其中
是整数。但由上述辗转相除法直接得到的贝祖数是唯一的。

注意到除非是

一个整除另一个的情况(此时有一个贝祖数为零),贝祖数必然一负一正。原因是,若
均为负数,则与
矛盾;若
均为正数,则

二元一次不定方程

贝祖定理的重要之处在于给出了二元一次不定方程的解法。事实上,若

是整数,则方程

有整数解的充分必要条件是

整除
在有解的情况下,首先算出
的一组贝祖数
那么
就是方程的一组整数解。方程的全部整数解为
其中
取遍全体整数。

贝祖数的估计——谈方琳定理

是正整数,
的最大公约数
时辗转相除的次数为
次,辗转相除直接得到相应的一组贝祖数
那么我们有

其中

是斐波那契数列:
斐波那契数列的前几个数是:0,1,1,2,3,5,8,13,21,34,55,……为方便起见,补充定义

谈方琳定理的证明

用数学归纳法。

时,
整除,此时
不难验证定理成立。

假设已证明定理对

成立,那么辗转相除次数为
相应的
是一组辗转相除次数为
的正整数。根据归纳假设,有

此时,有

因此,

由归纳假设得到的不等式,直接得到

而另一个式子则需要简单的计算。

由于

另一方面,由于贝祖数一负一正(或其中有零),

异号或其中有零,且
所以
定理得证。

谈方琳定理是最优结果

对于

谈方琳定理取到等号。事实上,此时,辗转相除过程就是

不难验证此时有
得到的贝祖数为
也就是说,我们有恒等式

不难验证,此时谈方琳定理里的上界和下界相等,全部等号均成立。因此,谈方琳定理已是最优结果,不能改进。

用谈方琳定理估计辗转相除次数

由谈方琳定理,

另一方面,

斐波那契数列有很好的估计。事实上,

因此,可以很方便地估算辗转相除的次数的上限。用上一节的例子

可以发现,这个上限是最优的。

参考文献

华罗庚,数论导引

谈方琳,斐波拉契数列和贝祖数的估计

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值