本文属于本专栏第三类主题:水论文。
本文给出谈方琳定理:如何看待 15 岁女生谈方琳参加世界顶尖科学家大会?她的研究成果含金量有多高? 的叙述和证明。
基础知识
对于正整数
![]()
若正整数
![]()
既能整除
![]()
也能整除
![]()
则称
![]()
是
![]()
的一个公约数。最大的公约数称为最大公约数,记作
![]()
或者
![]()
我们不加证明地指出,最大公约数能被任何一个公约数整除。例如,
求最大公约数的方法有多种。最大公约数可以通过把两个数分解为素数的乘积得到,例如
![]()
因此
![]()
但对于比较大的数,素分解的计算是困难的,因此这并不是最好的方法。
辗转相除法,是解决最大公约数计算问题的最好方法。辗转相除法的操作方式如下:
1,把
![]()
中较大的数除以较小的数。不妨设
![]()
若
![]()
能整除
![]()
则结果
![]()
计算完成。若非如此,则可以得到带余除式:
![]()
其中
![]()
是正整数,
2.把
![]()
的值设定为
![]()
的值设定为
![]()
回到第一步。
利用辗转相除法,我们总能在有限步骤内完成计算,得到的
![]()
就是我们要求的最大公约数。
例如,我们求51和36的最大公约数。
![]()
因此
贝祖定理和贝祖数
以上辗转相除法求最大公约数的步骤可以写成一系列的除式:
最后,
由上述一系列除式的倒数第二行得知
再由倒数第三行,得知
![]()
代入上式得
继续像这样,代入倒数第四行,倒数第五行……就可以不断地得到:
其中
![]()
都是整数,并且我们规定
这样,我们证明了,存在整数
![]()
使得
![]()
这个结果称为贝祖定理,相应的
![]()
称为
![]()
的一组贝祖数。
顺便一提,
![]()
的选择不是唯一的。例如,若
![]()
是一组贝祖数,则
![]()
也是,其中
![]()
是整数。但由上述辗转相除法直接得到的贝祖数是唯一的。
注意到除非是
![]()
一个整除另一个的情况(此时有一个贝祖数为零),贝祖数必然一负一正。原因是,若
![]()
均为负数,则与
![]()
矛盾;若
![]()
均为正数,则
二元一次不定方程
贝祖定理的重要之处在于给出了二元一次不定方程的解法。事实上,若
![]()
是整数,则方程
有整数解的充分必要条件是
![]()
整除
![]()
在有解的情况下,首先算出
![]()
的一组贝祖数
![]()
那么
![]()
就是方程的一组整数解。方程的全部整数解为
![]()
其中
![]()
取遍全体整数。
贝祖数的估计——谈方琳定理
设
![]()
是正整数,
![]()
求
![]()
的最大公约数
![]()
时辗转相除的次数为
![]()
次,辗转相除直接得到相应的一组贝祖数
![]()
那么我们有
其中
![]()
是斐波那契数列:
![]()
斐波那契数列的前几个数是:0,1,1,2,3,5,8,13,21,34,55,……为方便起见,补充定义
谈方琳定理的证明
用数学归纳法。
![]()
时,
![]()
被
![]()
整除,此时
![]()
不难验证定理成立。
假设已证明定理对
![]()
成立,那么辗转相除次数为
![]()
的
![]()
相应的
![]()
是一组辗转相除次数为
![]()
的正整数。根据归纳假设,有
此时,有
因此,
由归纳假设得到的不等式,直接得到
而另一个式子则需要简单的计算。
由于
另一方面,由于贝祖数一负一正(或其中有零),
![]()
异号或其中有零,且
![]()
所以
![]()
定理得证。
谈方琳定理是最优结果
对于
![]()
谈方琳定理取到等号。事实上,此时,辗转相除过程就是
![]()
不难验证此时有
![]()
得到的贝祖数为
![]()
也就是说,我们有恒等式
![]()
不难验证,此时谈方琳定理里的上界和下界相等,全部等号均成立。因此,谈方琳定理已是最优结果,不能改进。
用谈方琳定理估计辗转相除次数
由谈方琳定理,
另一方面,
斐波那契数列有很好的估计。事实上,
因此,可以很方便地估算辗转相除的次数的上限。用上一节的例子
![]()
可以发现,这个上限是最优的。
参考文献
华罗庚,数论导引
谈方琳,斐波拉契数列和贝祖数的估计