简介:Movielens 100K数据集是数据分析和推荐系统领域的经典研究案例,包含10万条用户对电影的评分记录。本项目将介绍如何利用Python和Apriori算法分析movielens数据集,挖掘用户偏好模式,并构建电影推荐系统。数据集的用户、电影和评分信息为理解观影习惯和偏好提供了基础。通过使用pandas库进行数据预处理、计算统计指标,以及利用mlxtend库实现Apriori算法,项目旨在发现用户群体间共同评分的电影模式,并提出基于内容和协同过滤的推荐策略。本pycharm工程中的主程序 movie_pro 将贯穿整个分析和推荐构建过程,是数据分析和推荐系统学习的实战性平台。
1. Movielens 100K数据集简介
Movielens 100K数据集是电影推荐系统研究领域中非常著名的数据集之一,由GroupLens研究小组创建。该数据集包含约10万条用户对电影的评分记录,以及相应的用户和电影的元数据信息。它不仅是评估推荐算法性能的重要基准,也是进行探索性数据分析和实践机器学习技术的优良工具。
Movielens 100K数据集的发布,为广大的研究者提供了一个标准化的测试环境,促进了推荐系统算法的比较与创新。数据集不仅能够帮助理解用户偏好的多样性,还能为不同类型的推荐技术提供实验平台。
在本章中,我们将首先介绍Movielens 100K数据集的构成,以及其在推荐系统研究中的应用背景和价值。随后,我们将深入探索数据集的基本结构,为进一步的数据分析和模式挖掘工作打下坚实的基础。
2. 数据集内容与结构分析
2.1 数据集的来源与意义
2.1.1 电影推荐系统的发展背景
在数字内容消费的爆炸性增长中,个性化推荐系统成为帮助用户发现内容的关键工具。推荐系统使得从海量电影库中找到用户可能感兴趣的电影变得更加高效。由于数据驱动决策的兴起,推荐系统在商业和用户体验中扮演了重要角色。Movielens 100K数据集应运而生,旨在提供一个用于评估推荐算法的基准数据集,通过它,研究人员和开发人员可以开发并测试推荐算法,包括但不限于基于内容的推荐、协同过滤等技术。
2.1.2 Movielens数据集的构建者及目的
Movielens数据集由GroupLens研究小组构建,是明尼苏达大学的一个研究项目。该数据集的目的是支持研究人员和学生对推荐系统的研究。Movielens 100K数据集是这个项目中较小的一个版本,但它提供了足够的信息,使得研究人员可以在这个数据集上开发和评估推荐算法。它也足够大,以至于能够展示出数据复杂性和多样性,这对于真实世界的应用具有重要意义。
2.2 数据集的详细结构解析
2.2.1 数据文件的组成
Movielens 100K数据集主要由三个文件组成: u.data 、 u.item 和 u.user 。
-
u.data:该文件记录了用户评分数据,包括用户ID、电影ID、评分和时间戳。这是进行分析的核心数据文件。 -
u.item:该文件包含了电影的详细信息,如电影ID、电影标题和发行日期,以及电影的分类信息。 -
u.user:该文件提供了用户的基本信息,包括用户ID、年龄、性别、职业和所在州。
2.2.2 数据格式及字段含义
让我们来详细解析每个文件的格式:
-
u.data文件格式:UserID \t ItemID \t Rating \t Timestamp - UserID:用户ID。
- ItemID:项目ID(在此场景中为电影ID)。
- Rating:用户对电影的评分,范围是1到5。
-
Timestamp:Unix时间戳,表示评分时间。
-
u.item文件格式:MovieID|Title|Release Date|Video Release Date|IMDb URL|unknown|Action|Adventure|Animation|Children's|Comedy|Crime|Documentary|Drama|Fantasy|Film-Noir|Horror|Mystery|Romance|Sci-Fi|Thriller|War|Western - MovieID:电影ID。
- Title:电影名称。
- Release Date:发行日期。
-
其余字段:表示电影属于的类型标签。
-
u.user文件格式:UserID::Gender::Age::Occupation::Zip-code - UserID:用户ID。
- Gender:用户的性别。
- Age:用户年龄。
- Occupation:用户职业。
- Zip-code:用户所在邮编。
2.2.3 数据集的统计特性分析
分析 u.data 文件的统计特性,我们可以得到一些关于用户行为的洞见。例如,可以计算出最常见的评分、平均评分等,并可以分析用户评分的分布情况。通过计算不同电影获得的评分数量,我们可以得出最流行和最少被评分的电影。
对于 u.item 文件,我们可以分析电影的类型分布、不同年代的电影分布以及不同类型电影的平均评分等。而分析 u.user 文件,我们可以了解用户群体的年龄分布、性别比例以及职业分布等信息。
通过这些数据,我们可以对用户的行为模式、偏好以及电影受欢迎程度有一个全面的了解。这些分析结果将对构建推荐系统模型和算法设计起到重要作用。
import pandas as pd
# 读取数据集
ratings = pd.read_csv('u.data', sep='\t', names=['UserID', 'ItemID', 'Rating', 'Timestamp'])
items = pd.read_csv('u.item', sep='|', encoding='latin-1', names=['MovieID', 'Title', 'Release Date', 'Video Release Date', 'IMDb URL'] +
[f'unknown_{i}' for i in range(19)])
users = pd.read_csv('u.user', sep='::', names=['UserID', 'Gender', 'Age', 'Occupation', 'Zip-code'])
# 显示前5条数据
print(ratings.head())
print(items.head())
print(users.head())
以上代码块展示了如何使用Python的pandas库来读取并展示三个主要数据文件的前五行,从而获得对数据集的初步了解。通过后续的统计分析,我们可以得到更多关于数据集的深入见解。
3. Python数据预处理与分析
3.1 Python环境与工具配置
3.1.1 必要的Python库安装
在处理大规模数据集,如Movielens 100K,Python作为一种高级编程语言,在数据分析、处理和机器学习领域内拥有诸多强大的库。在开始数据分析前,需要确保安装了以下核心库:
- NumPy : 用于高性能的多维数组对象和这些数组的操作工具。
- Pandas : 提供了快速、灵活和表达能力强的数据结构,专门针对数据分析。
- Matplotlib : 一个用于创建静态、交互式和动画可视化的库。
- SciPy : 提供了数学算法和函数的库,适用于数值计算。
- Scikit-learn : 一个简单而高效的工具,用于数据挖掘和数据分析。
在Python环境中,通常使用pip命令来安装这些库:
pip install numpy pandas matplotlib scipy scikit-learn
3.1.2 数据集读取与初步检查
读取数据集是数据预处理的第一步。使用Pandas库中的 read_csv() 函数读取Movielens数据集中的CSV文件:
import pandas as pd
ratings = pd.read_csv('ratings.dat', sep='::', names=['user_id', 'item_id', 'rating', 'timestamp'], engine='python')
movies = pd.read_csv('movies.dat', sep='::', names=['movie_id', 'title', 'genres'], engine='python', encoding='latin-1')
在读取数据后,进行初步的数据检查是必要的步骤,这包括查看数据的头部、尾部、基本统计信息和数据类型:
print(ratings.head())
print(ratings.describe())
print(ratings.dtypes)
执行上述代码块后,你可以查看数据集中前几条记录(head),数据的统计信息(describe),以及每列数据的数据类型(dtypes),从而初步了解数据集的结构和内容。
3.2 数据清洗与格式化
3.2.1 缺失值处理
数据清洗的第一步是处理缺失值。在Movielens数据集中,缺失值并不多见,但如果存在,可以通过以下方式处理:
# 检查每一列的缺失值数量
print(ratings.isnull().sum())
# 删除含有缺失值的记录
ratings.dropna(inplace=True)
3.2.2 异常值检测与处理
异常值的检测和处理是数据预处理中非常重要的一步。异常值可以是由于数据错误或异常情况引起的记录。我们可以使用标准差方法来检测异常值:
import numpy as np
# 假设ratings列是正态分布的,使用Z分数检测异常值
z_scores = np.abs((ratings['rating'] - ratings['rating'].mean()) / ratings['rating'].std())
outlier_indices = np.where(z_scores > 3)[0]
# 删除异常值
ratings.drop(ratings.index[outlier_indices], inplace=True)
在上述代码块中,我们首先计算了评分的标准差和平均值,并计算出每个记录的Z分数。然后,我们删除了那些Z分数大于3的记录,通常认为这些记录是异常值。
3.3 探索性数据分析(EDA)
3.3.1 用户评分分布
探索性数据分析(EDA)是理解数据集并准备下一步建模的关键步骤。用户评分分布的可视化可揭示评分数据的偏态情况:
import matplotlib.pyplot as plt
plt.hist(ratings['rating'], bins=10)
plt.title('Distribution of User Ratings')
plt.xlabel('Rating')
plt.ylabel('Frequency')
plt.show()
在上述代码块中,我们使用了Matplotlib库来生成用户评分的直方图,直方图揭示了评分的分布情况。通过观察直方图,我们能够理解评分数据的集中趋势和分布的离散程度。
3.3.2 电影流行度分析
接下来,通过电影被评分的次数来分析电影的流行度:
movie_popularity = ratings['item_id'].value_counts()
movie_popularity.plot(kind='bar')
plt.title('Movie Popularity Analysis')
plt.xlabel('Movie ID')
plt.ylabel('Number of Ratings')
plt.show()
在上述代码块中,我们利用 value_counts() 函数统计每部电影的评分次数,并通过条形图展示每部电影的流行度。这有助于识别哪些电影受到了用户的普遍关注。
3.3.3 用户活跃度分析
最后,分析不同用户的活跃度,即每个用户参与评分的电影数量:
user_activity = ratings['user_id'].value_counts()
user_activity.plot(kind='kde')
plt.title('User Activity Analysis')
plt.xlabel('Number of Rated Movies per User')
plt.ylabel('Density')
plt.show()
在上述代码块中,我们使用核密度估计(Kernel Density Estimate,KDE)图来可视化用户活跃度。通过这种方式,我们能够看出大部分用户的活跃程度,并识别出那些非常活跃或非常不活跃的用户。
通过完成这一系列的数据预处理与分析步骤,我们已经为深入的数据挖掘和建模打下了坚实的基础。接下来,我们可以利用Apriori算法等数据挖掘方法来探索用户喜好模式。
4. Apriori算法应用
4.1 Apriori算法理论基础
4.1.1 关联规则与频繁项集的定义
关联规则挖掘是数据挖掘领域的一个重要问题,它旨在在一个大的数据集中发现项之间的有趣关系,这些关系通常表示为规则的形式。频繁项集是指在一个数据集中频繁出现的项的集合,而关联规则则是用来描述一个频繁项集的某些项的出现是否对其他项的出现有影响。
为了形式化这些概念,我们首先定义几个基本概念:
- 项(Item) : 数据集中的一个元素或属性,例如在购物篮分析中,每一件商品就是一个项。
- 项集(Itemset) : 项的集合,例如{牛奶, 面包}是一个项集。
- 交易(Transaction) : 项集的一个实例,例如一个购物篮里的商品。
- 支持度(Support) : 一个项集在所有交易中出现的频率,它是衡量项集重要性的指标。
- 置信度(Confidence) : 一条关联规则的可信度,表示当规则前件出现时,后件出现的条件概率。
关联规则的一般形式可以表示为: A -> B ,其中 A 和 B 是项集,且 A ∩ B = ∅ 。规则 A -> B 的置信度计算公式为: conf(A -> B) = P(A ∪ B) / P(A) 。此外,还需要定义一个最小支持度阈值(min_sup)和最小置信度阈值(min_conf),以过滤掉不那么重要的频繁项集和规则。
4.1.2 Apriori算法的工作原理
Apriori算法是一种经典的频繁项集挖掘算法,它基于这样一个事实:频繁项集的所有非空子集也必须是频繁的。该算法通过迭代找出频繁项集,具体步骤如下:
- 候选生成 : 通过连接步(join step)生成新的候选项集,即从之前找到的频繁项集中生成新的候选项集。
- 剪枝 : 基于Apriori属性,剪掉那些包含非频繁项集的候选项集,减少不必要的计算量。
- 支持度计算 : 对候选项集计算支持度,与最小支持度阈值比较。
- 迭代 : 对每一层的候选项集重复上述过程,直到不能生成更长的频繁项集为止。
由于Apriori算法在频繁项集生成过程中可能需要多次扫描数据库,且候选集数量庞大时会导致巨大的计算量,因此在实际应用中需要仔细选择最小支持度阈值,以及优化算法实现。
4.2 算法实现与数据挖掘过程
4.2.1 算法参数设定与调整
在应用Apriori算法之前,我们需要设定算法的参数,主要是最小支持度和最小置信度阈值。这两个参数的选择直接影响到挖掘结果的质量和效率。如果设置得太低,可能会产生过多的规则,其中很多规则可能是不相关的;如果设置得太高,则可能遗漏一些重要的规则。
参数的选择通常依赖于具体的数据集和应用背景,往往需要经过多次尝试和评估才能确定合适的值。在实际操作中,可以先设定一个较小的阈值进行初步的挖掘,然后根据结果适当调整。
4.2.2 频繁项集生成过程
为了更好地理解频繁项集的生成过程,我们假设有一个简单的交易数据集。以下是使用Python中的 mlxtend 库来挖掘频繁项集的代码示例:
import pandas as pd
from mlxtend.preprocessing import TransactionEncoder
from mlxtend.frequent_patterns import apriori, association_rules
# 假定的交易数据
dataset = [['牛奶', '面包', '尿布'],
['可乐', '面包', '尿布', '啤酒'],
['牛奶', '尿布', '啤酒', '鸡蛋'],
['面包', '牛奶', '尿布', '啤酒'],
['面包', '牛奶', '尿布', '可乐']]
# 将数据集转换为独热编码形式
te = TransactionEncoder()
te_ary = te.fit(dataset).transform(dataset)
df = pd.DataFrame(te_ary, columns=te.columns_)
# 使用Apriori算法找出所有频繁项集
frequent_itemsets = apriori(df, min_support=0.5, use_colnames=True)
print(frequent_itemsets)
此代码块首先定义了一个简单的交易数据集,然后通过 mlxtend 库中的 TransactionEncoder 进行独热编码,最后调用 apriori 函数找出所有支持度大于0.5的频繁项集。
4.2.3 强关联规则提取
在获取了频繁项集之后,下一步是提取强关联规则。强关联规则意味着它们同时满足最小支持度和最小置信度的要求。通过 mlxtend 库中的 association_rules 函数可以轻松地提取出强关联规则,并可以根据需要进一步设定提升度(lift)等其他指标进行筛选。
# 根据频繁项集提取关联规则
rules = association_rules(frequent_itemsets, metric="confidence", min_threshold=0.7)
print(rules[['antecedents', 'consequents', 'support', 'confidence']])
上述代码利用 association_rules 函数找出置信度大于0.7的规则,并打印出前件、后件、支持度和置信度。这个过程帮助我们了解不同商品之间的购买关系,为推荐系统提供决策支持。
通过以上详细的介绍,我们可以看到Apriori算法在关联规则挖掘中的重要性以及实现过程。接下来的章节将继续深入探讨如何利用挖掘出的规则进行用户喜好模式的挖掘,以及如何将这些模式应用于推荐系统中。
5. 用户喜好模式挖掘
5.1 用户喜好模型构建
5.1.1 用户-电影评分矩阵构建
在挖掘用户喜好模式之前,我们需要构建一个用户-电影评分矩阵,这是理解和分析用户喜好的基础。用户-电影评分矩阵是一个二维矩阵,其中行代表用户,列表示电影,单元格内的值代表对应用户对相应电影的评分。通过这个矩阵,我们能够直观地看出用户对不同电影的偏好程度。
在使用Python进行矩阵构建时,可以使用Pandas库来处理。首先,将Movielens数据集中的用户评分数据读取进DataFrame结构,然后创建一个新的DataFrame对象作为评分矩阵。
import pandas as pd
# 读取用户评分数据
ratings = pd.read_csv('ratings.csv')
# 构建用户-电影评分矩阵
rating_matrix = ratings.pivot(index='userId', columns='movieId', values='rating').fillna(0)
以上代码首先导入了pandas库,并读取了名为 ratings.csv 的用户评分数据文件。然后,使用 pivot 函数对数据进行重组,创建了一个新的DataFrame,其中索引为用户ID,列为电影ID,值为评分,未评分的位置填充为0。
为了更深入理解矩阵中的模式,我们可以对矩阵进行一些基础的分析:
# 显示前5行和前5列数据
print(rating_matrix.head())
# 计算评分矩阵的统计特性
ratings_mean = rating_matrix.mean(axis=1)
ratings_std = rating_matrix.std(axis=1)
# 显示每个用户的平均评分和标准差
print(ratings_mean.head())
print(ratings_std.head())
5.1.2 基于评分的用户群体分析
在用户-电影评分矩阵构建完成后,我们可以进一步分析其中的模式,特别是用户群体之间可能存在的相似性。一个常用的方法是计算用户间的相似度,以确定哪些用户对电影的喜好是相似的。
常用的相似度计算方法包括皮尔逊相关系数、余弦相似度等。在本节中,我们将使用余弦相似度来衡量用户间的相似性。
from sklearn.metrics.pairwise import cosine_similarity
import numpy as np
# 将评分矩阵转换为用户-用户相似度矩阵
user_similarity = cosine_similarity(rating_matrix.fillna(0))
# 查看相似度矩阵的形状
print(user_similarity.shape)
这里使用了 sklearn 的 pairwise 模块中的 cosine_similarity 函数来计算余弦相似度,并将评分矩阵中的NaN值替换为0以避免计算错误。得到的相似度矩阵将用于后续的推荐系统构建。
5.2 基于模式的推荐策略
5.2.1 利用Apriori挖掘用户喜好规则
Apriori算法是一种经典的关联规则学习算法,广泛应用于购物篮分析、推荐系统等场景。通过挖掘用户行为数据中的频繁项集,我们可以发现用户喜好的潜在模式,并据此提出推荐。
接下来,我们将利用Apriori算法来挖掘用户-电影评分矩阵中的频繁项集和关联规则。这里,我们将评分高的电影视为用户可能喜欢的“项”。
from mlxtend.frequent_patterns import apriori, association_rules
# 将评分矩阵转换为用户购买行为数据(即二维的0-1矩阵)
data = rating_matrix.applymap(lambda x: 1 if x > 3 else 0)
# 使用Apriori算法找到频繁项集
frequent_itemsets = apriori(data, min_support=0.01, use_colnames=True)
# 根据频繁项集提取关联规则
rules = association_rules(frequent_itemsets, metric="confidence", min_threshold=0.5)
在上述代码中,我们首先将评分矩阵中的高评分(例如大于3)替换为1,其余为0,从而形成一个二维的0-1矩阵。然后,使用 mlxtend 库中的 apriori 函数来找出所有频繁项集, min_support 参数控制项集的支持度阈值。最后,使用 association_rules 函数提取关联规则,并通过 min_threshold 参数设置置信度阈值。
5.2.2 用户偏好的个性化推荐生成
基于Apriori算法提取的关联规则,我们可以为用户生成个性化的推荐。推荐的生成可以基于用户已评分的电影,找到与其频繁同时出现的其他电影,然后推荐给用户。
# 以用户1的评分记录为例,生成个性化推荐
user1_ratings = data.loc[1]
user1_support = {}
for item in frequent_itemsets[frequent_itemsets.columns[0]]:
user1_support[item] = user1_ratings.get(item, 0)
# 找到用户1评分最高的电影
top_movies = data.loc[1][data.loc[1] == 1].index.tolist()
# 获取与高评分电影相关联的推荐电影
recommended_movies = []
for movie in top_movies:
for index, row in rules[rules['consequents'].apply(lambda x: movie in x)].iterrows():
recommended_movies.append((row['antecedents'], row['consequents'], row['confidence']))
此代码片段首先获取用户1的评分记录,然后遍历频繁项集,为每个电影项构建一个与用户1评分相关的字典。接着,找到用户1评分最高的电影,并且基于这些高评分电影生成推荐列表,包括推荐的电影和规则的置信度。
通过上述步骤,我们已经构建了一个基础的推荐系统,它能够根据用户的评分数据挖掘潜在的喜好,并提出个性化的电影推荐。然而,这种基于规则的推荐系统在处理大规模数据时可能不够高效,且无法处理评分的连续性。为了解决这些问题,我们可以结合基于模型的推荐方法,如协同过滤,以及进一步优化推荐策略。
6. 基于内容与协同过滤的推荐系统
在现代推荐系统领域,内容过滤和协同过滤是两种非常重要的技术。它们各自有不同的优势和应用场景,并且在实践中常常结合使用,以提供更准确、更个性化的推荐结果。下面将详细介绍这两种技术的应用以及推荐系统的评估与优化方法。
6.1 基于内容过滤的推荐
基于内容的推荐系统依赖于项目的特征信息,如电影的类型、导演、演员等,来推荐用户可能感兴趣的新项目。其核心思想是分析用户过去喜欢的项目内容,然后找到具有相似内容特征的新项目进行推荐。
6.1.1 电影内容特征提取
在Movielens数据集中,每个电影项都有一个唯一的电影ID和一系列的元数据,比如电影名称、发行年份、类型等。内容特征提取的第一步是加载这些信息,并进行适当的格式化处理。
import pandas as pd
# 加载电影数据
movies_df = pd.read_csv('movies.csv')
# 提取电影ID和电影名称作为内容特征
content_features = movies_df[['movieId', 'title']]
6.1.2 基于内容的推荐算法实现
基于内容的推荐算法实现通常包括以下步骤:
- 对电影特征进行编码(如使用独热编码表示电影类型)
- 计算特征之间的相似度(如使用余弦相似度)
- 推荐与用户历史喜好相似的电影
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.metrics.pairwise import cosine_similarity
from sklearn.preprocessing import MultiLabelBinarizer
# 假设电影类型数据存储在 'genres' 列中,用逗号分隔
vectorizer = CountVectorizer(tokenizer=lambda doc: doc.split(','), lowercase=False)
X = vectorizer.fit_transform(movies_df['genres'])
mlb = MultiLabelBinarizer()
X_binarized = mlb.fit_transform(X.toarray())
# 计算电影间相似度
similarity = cosine_similarity(X_binarized)
6.2 协同过滤推荐系统
协同过滤推荐系统利用用户之间的相互作用信息,通过预测用户对项目(如电影)的评分来进行推荐。它的主要类型包括用户基于评分的协同过滤和基于模型的协同过滤。
6.2.1 用户基于评分的协同过滤
用户基于评分的协同过滤通过分析用户间的相似度进行推荐。如果两个用户对一些项目有相似的评分,那么可以假设他们对其他项目的评分也会相似,从而根据相似用户评分推断目标用户的喜好。
from sklearn.metrics.pairwise import pairwise_distances
# 计算用户间的相似度
user_similarity = pairwise_distances(df_rating, metric='cosine', n_jobs=-1)
6.2.2 基于模型的协同过滤方法
基于模型的方法主要指使用机器学习技术来预测用户对电影的评分。常见的模型包括矩阵分解(如SVD),神经网络,以及集成学习模型。
from surprise import SVD
from surprise import Dataset
from surprise.model_selection import cross_validate
# 加载数据集
data = Dataset.load_from_df(ratings[['userId', 'movieId', 'rating']], Reader(rating_scale=(1, 5)))
# 使用SVD算法
svd = SVD()
cross_validate(svd, data, measures=['RMSE', 'MAE'], cv=5, verbose=True)
6.3 推荐系统的评估与优化
评估推荐系统的效果通常采用一些标准指标,如准确度、召回率、F1分数等。优化策略可能包括调整推荐算法的参数、特征工程、引入新的模型等。
6.3.1 推荐准确度的评估指标
在评估推荐系统的准确度时,经常使用均方根误差(RMSE)和平均绝对误差(MAE)。
from surprise import accuracy
# 计算RMSE和MAE
predictions = svd.test(data.build_testset())
rmse = accuracy.rmse(predictions)
mae = accuracy.mae(predictions)
6.3.2 优化策略与实际应用案例
优化策略可以分为系统层优化和算法层优化。系统层优化涉及数据预处理、特征选择、性能优化等。算法层优化可能包括模型参数调整、集成学习等。实际应用案例中,可以根据不同的业务需求选择合适的推荐策略和优化方法。
以Netflix的推荐系统为例,他们通过大规模的A/B测试和机器学习优化模型,极大地提高了推荐的准确率和用户满意度。而Spotify则结合了音乐的音频特征和用户的播放历史,实现了个性化音乐推荐。
总结起来,虽然基于内容和协同过滤的推荐系统各有优势,但结合多种推荐方法和不断优化,才能够有效提升推荐系统整体性能。
简介:Movielens 100K数据集是数据分析和推荐系统领域的经典研究案例,包含10万条用户对电影的评分记录。本项目将介绍如何利用Python和Apriori算法分析movielens数据集,挖掘用户偏好模式,并构建电影推荐系统。数据集的用户、电影和评分信息为理解观影习惯和偏好提供了基础。通过使用pandas库进行数据预处理、计算统计指标,以及利用mlxtend库实现Apriori算法,项目旨在发现用户群体间共同评分的电影模式,并提出基于内容和协同过滤的推荐策略。本pycharm工程中的主程序 movie_pro 将贯穿整个分析和推荐构建过程,是数据分析和推荐系统学习的实战性平台。
3419

被折叠的 条评论
为什么被折叠?



