瑞雷波频散曲线_瑞雷波频散曲线的分模态提取与联合反演

瑞雷波频散曲线的分模态提取与联合反演

刘志友

1

,李子伟

2

,钟明峰

1

【摘

要】

瑞雷波在层状介质中传播具有频散特性,利用地震记录中的面波信息,

提取面波的频散曲线,反演可以建立近地表的横波速度结构模型。本文建立了

一个理论地质模型,理论合成面波地震记录,研究了频率波数域中面波频散曲

线的分模态提取,并利用等厚分层阻尼最小二乘反演方法对面波各模态的频散

曲线进行了分模态反演和联合反演。反演结果表明:瑞雷波基阶频散曲线的浅

(<10m)

反演结果与理论模型吻合最好,一阶高阶频散曲线在

15-30m

的反

演结果与理论模型吻合最好,联合反演在整个深度范围内都可以很好的吻合理

论模型,且反演结果的相对误差要低于分模态反演。

【期刊名称】

工程地球物理学报

【年

(

),

期】

2012(009)005

【总页数】

7

【关键词】

瑞雷波;频散曲线;频率波数域;分模态提取;联合反演

1

地震波在固体介质中传播,分为横波和纵波,在自由界面处会相互发生干涉,

产生瑞雷波

[1]

1987

年,

Rayleigh

首次从理论上证明了瑞雷波的存在,其产

生于固体界面的自由表面,质点在波的传播方向垂直平面内振动,振动轨迹为

逆时针方向转动的椭圆

[1,2]

20

世纪

50

年代,人们发现瑞雷波在层状介质中

存在频散现象,最先被应用于地球内部结构的勘探研究,随后在工程勘探领域

得到了最为广泛的应用

[3,4]

1994

年,裴江云利用普通反射地震记录中的瑞雷波,进行了近地表的速度结构

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
好的,建立朴素贝叶斯类器可以使用Python中的sklearn库,具体步骤如下: 1. 准备数据集 准备两个类别的数据集,别为雷波和勒夫波的基阶频散曲线数据。 2. 数据预处理 对于每个数据点,我们可以提取其频率和相对振幅作为特征。然后将所有数据点组成一个特征向量。同时,对于不同的数据集,需要进行标记,如雷波的标记为1,勒夫波的标记为0。 3. 建立模型 使用sklearn库中的MultinomialNB算法,建立朴素贝叶斯类器模型。 4. 模型训练 使用训练集进行模型训练。 5. 模型测试 使用测试集进行模型测试,得出类器的准确率。 6. 模型预测 使用训练好的模型对新数据进行类预测。 具体实现可以参考以下代码: ```python from sklearn.naive_bayes import MultinomialNB from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score # 准备数据集 X = [[freq1, amp1], [freq2, amp2], ...] y = [1, 1, ..., 0, 0, ...] # 划训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 建立模型 clf = MultinomialNB() # 模型训练 clf.fit(X_train, y_train) # 模型测试 y_pred = clf.predict(X_test) accuracy = accuracy_score(y_test, y_pred) print("Accuracy:", accuracy) # 模型预测 new_data = [[freq1, amp1], [freq2, amp2], ...] predict_result = clf.predict(new_data) ``` 需要注意的是,朴素贝叶斯类器在处理连续值数据时,需要将其离散化,可以使用箱或者高斯布等方法。同时也需要对数据进行正态化处理,以提高模型的准确率。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值