Generating Bounds for the Ground State Energy of the Infinite Quantum Lens Potential
Abstract:
Moment based methods have produced efficient multiscale quantization algorithms for solving singular perturbation/strong coupling problems. One of these, the Eigenvalue Moment Method (EMM), developed by Handy et al (Phys. Rev. Lett.{\bf 55}, 931 (1985); ibid, {\bf 60}, 253 (1988b)), generates converging lower and upper bounds to a specific discrete state energy, once the signature property of the associated wavefunction is known. This method is particularly effective for multidimensional, bosonic ground state problems, since the corresponding wavefunction must be of uniform signature, and can be taken to be positive. Despite this, the vast majority of problems studied have been on unbounded domains. The important problem of an electron in an infinite quantum lens potential defines a challenging extension of EMM to systems defined on a compact domain. We investigate this here, and introduce novel modifications to the conventional EMM formalism that facilitate its adaptability to the required boundary conditions.