需要 Spatial Analyst 许可。
描述
使用核函数根据点或折线要素计算每单位面积的量值以将各个点或折线拟合为光滑锥状表面。在计算核密度时,可以使用障碍来改变要素的影响。
插图OutRas = KernelDensity(InPts, None, 30)
使用方法搜索半径(Python 中的 search_radius)参数值越大,生成的密度栅格越平滑且概化程度越高。值越小,生成的栅格所显示的信息越详细。
计算密度时,仅考虑落入邻域范围内的点或线段。如果没有点或线段落入特定像元的邻域范围内,则为该像元分配 NoData。
Population 字段(Python 中的 population_field)中的值过大或过小都会使结果看起来并不直观。如果 population 字段的平均值远大于 1(例如,城市人口),则默认搜索半径可能会非常小,导致在输入点周围生成很小的环。如果 population 字段的平均值远小于 1,则计算的搜索半径看起来可能会非常大。在这些情况下,您可输入自己的搜索半径。
输出像元大小可以通过数值进行定义,也可以从现有栅格数据集获取。如果没有将像元大小明确指定为参数值,则将从像元大小环境获取相应值(前提是已指定环境)。如果未指定参数像元大小和环境像元大小,但已设置捕捉栅格环境,则将使用捕捉栅格的像元大小。如果未指定任何内容,则像元大小会通过使用范围的宽度或高度中的较小值除以 250 来计算,其中范围位于在环境中指定的输出坐标系内。
如果使用数值指定像元大小,则工具会直接将其用于输出栅格。
如果使用栅格数据集指定像元大小,则该参数将显示栅格数据集的路径而不是像元大小的值。如果数据集的

核密度分析工具使用核函数计算点或线要素的密度,形成平滑的锥状表面。此过程考虑障碍并调整搜索半径以适应数据。输出值可表示密度或预期计数,支持平面和测地线两种方法。工具需要 Spatial Analyst 许可。
最低0.47元/天 解锁文章
5476

被折叠的 条评论
为什么被折叠?



