知识图谱综述学习笔记

本文概述了知识图谱的定义,强调它是一种揭示实体之间关系的语义网络。介绍了知识图谱的逻辑结构和体系架构,并详细探讨了知识抽取(实体、关系、属性抽取)和知识表示的关键技术。知识表示的学习模型如距离模型、双线性模型等在链接预测和语义相似度计算中起到重要作用。
摘要由CSDN通过智能技术生成

1. 知识图谱的定义与架构

1.1 知识图谱的定义

  • 在维基百科中:知识图谱是Google用于增强其搜索引擎功能的知识库。
  • 本质上:知识图谱是一种揭示实体之间关系的语义网络,可以对现实世界的事物及其相互关系进行形式化地描述。
  • 现在的知识图谱已经被用来泛指各种大规模的知识库。

三元组是知识图谱的一种通用表示方式,即G=(E,R,S)。

1.2 知识图谱的架构

包括自身的逻辑结构及体系架构。

1)知识图谱的逻辑结构:

- 知识图谱在逻辑上可以分为模式层与数据层两个层次。
- 数据层主要由一系列的事实组成,而知识将以事实为单位进行存储。若用(实体1,关系, 实体2)、(实体、属性,属性值)这样的三元组来表达事实,可选择图数据库作为存储介质,例如开源的Neo4j[9]、Twitter的FlockDB[10]、sones的GraphDB[11]等。
- 模式层构建在数据层之上,主要通过本体库来规范数据层的一系列事实表达。

2)知识图谱的体系架构

- 知识图谱主要有自顶向下(top-down)与自底向上(bottom-up)两种构建方式。
- 自顶向下指的是先为知识图谱定义好本体与数据模式,再讲实体加入到知识库。该构建方式需要利用一些现有的结构化知识库作为其基础知识库,例如Freebase项目就是采用这种方式,它的绝大部分数据是从维基百科中得到的。
- 自底向上指的是从一些开放链接数据中提取出实体,选择其中置信度较高的加入知识库,再构建顶层的本体模式。**目前,大多数知识图谱都采用自底向上的方式
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值