matlab 批量镶嵌,[转载]图像处理matlab及图像融合图像镶嵌图像拼接

本文介绍了如何使用MATLAB进行图像处理,包括图像类型的转换、矩阵运算、空间曲面和曲线的绘制。重点讨论了图像批量镶嵌的原理,如通过DCT进行图像压缩,并展示了使用MATLAB实现的DCT压缩代码。此外,还探讨了消除图像拼接缝的方法,如中值滤波、小波变换和加权平均平滑技术,以获得高质量的图像镶嵌结果。
摘要由CSDN通过智能技术生成

要把double的图像(范围是0到1)再次转化为256灰度值的,可以这样

Igrey= uint8(I2*255)

图像类型转换函数:

dither() 通过颜色抖动,把真彩图像转换成索引图像或灰度图象转换成二值图像

gray2ind() 将灰度图像(或二值图像)转换成索引图像

grayslice() 通过设定的阈值将灰度图象转换成索引图像

im2bw() 通过设定亮度阈值将灰度、真彩、索引图象转换成二值图像

ind2gray() 将索引图象转换成灰度图象

ind2rgb() 将索引图象转换成真彩色图像

mat2gray() 将一个数据矩阵转换成一幅灰度图象

rgb2gray() 将真彩转换成灰度图象

rgb2ind() 将真彩转换成索引图象

图像类型与类型间的转换

1。索引图像:包括一个数据矩阵X和一个色图阵MAP。矩阵元素值指向MAP中的特定颜色向量。

2。灰度图像:数据矩阵I,I中的数据代表了颜色灰度值。矩阵中的元素可以是double类型、8位或16位无符号的整数类型。

3。RGB图像:即真彩图像。矩阵中每个元素为一个数组,数组的元素定义了像素的红、绿、蓝颜色值。RGB数组可以是double类型、8位或16位无符号的整数类型。

4。二值图像:一个数据阵列,每个象素只能取0或1。

矩阵的基本运算

行列式求值:det(A)

矩阵加减:+、-

矩阵相乘:*

矩阵左除:A/B %相当于inv(A)*B

矩阵右除:AB %相当于A*inv(B)

矩阵的幂:^

矩阵转置:'

矩阵求共轭(实部相同,虚部相反):conj(X)

矩阵求逆:inv(X)

级数的求和与收敛

symsum(fun,var,a,b):其中fun是通项表达式,var为求和变量,a为求和起点,b为求和终点

例如:I为1/[n*(2n+1)]从1到正无穷的和,求I

syms n;

f1=1/(n*(2*n+1));

I=symsum(f1,n,1,inf)

计算结果为:

I =2-2*log(2)

空间曲面

mesh()函数语法:

mesh(Z):

mesh(X,Y,Z,C):其中C是用来定义相应点颜色等属性的数组

例:求x^2+y^2=z的空间曲面

x=-4:4;

y=x;

[X,Y]=meshgrid(x,y);%生成x,y坐标

Z=X.^2+Y.^2;

mesh(X,Y,Z)

曲面图

[x,y]=meshgrid(xa,ya)

当xa,ya分别为m维和n维行向量,得到x和y均为n行m列矩阵。meshgrid常用于生成x-y平面上的网格数据;

mesh(x,y,z)绘制网面图,是最基本的曲面图形命令,其中x、y、z是同阶矩阵,表示曲面三维数据;

mesh(xa,ya,z)

xa,ya分别为m维和n维向量,z为n行m列矩阵。等价于先[x,y]=meshgrid(xa,ya)再mesh(x,y,z);

surf(x,y,z)绘制曲面图,与mesh用法类似;

contour(x,y,z)绘制等高线图,与mesh用法类似,可指定z的范围;

contour3(x,y,z)绘制三维等高

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值