如何将一个字典转换为玲阶矩阵,将元组的字典转换为数字矩阵

I have a very large dictionary containing tuples as keys and their values. This dictionary is supposed to represent an adjacency matrix with word co-occurrence vectors, eg 'work' appears with 'experience' 16 times and 'work' appears with 'services' 15 times. Whether or not this is the preferred storage method is another issue (with the massive amount of data I have, nested dictionaries became a nightmare for traversal), but it's simply what I have for right now.

Frequency:{

('work', 'experience'): 16,

('work', 'services'): 25,

('must', 'services'): 15,

('data', 'services'): 10,

...

...}

Thanks to a previous post, I've been able to do a simple binary adjacency matrix with NetworkX, simply by using this methodology:

A=Frequency.keys()

networkx.Graph(A)

That result was great then, but my question is what do I have to do to convert Frequency into an adjacency matrix using its co-occurrence value as the value in the matrix, so that the result would it would look something along the lines of this:

array([[ 0., 16., 25., 0.],

[ 16., 0., 1., 0.],

[ 25., 1., 0., 1.],

[ 10., 0., 0., 0.]

...)

I apologize if this is similar to previous posts, but I just can't find the correct way to convert these tuples to a matrix that I can use in NetworkX. I'm assuming I would use numpy, but I cannot find any documentation for a method like this.

Thanks in advance,

Ron

解决方案

This answer may be of help. With your sample data:

>>> frequency = {('work', 'experience'): 16,

... ('work', 'services'): 25,

... ('must', 'services'): 15,

... ('data', 'services'): 10}

>>> keys = np.array(frequency.keys())

>>> vals = np.array(frequency.values())

>>> keys

array([['work', 'services'],

['must', 'services'],

['work', 'experience'],

['data', 'services']],

dtype='|S10')

>>> vals

array([25, 15, 16, 10])

>>> unq_keys, key_idx = np.unique(keys, return_inverse=True)

>>> key_idx = key_idx.reshape(-1, 2)

>>> unq_keys

array(['data', 'experience', 'must', 'services', 'work'],

dtype='|S10')

>>> key_idx

array([[4, 3],

[2, 3],

[4, 1],

[0, 3]])

>>> n = len(unq_keys)

>>> adj = np.zeros((n, n) ,dtype=vals.dtype)

>>> adj[key_idx[:,0], key_idx[: ,1]] = vals

>>> adj

array([[ 0, 0, 0, 10, 0],

[ 0, 0, 0, 0, 0],

[ 0, 0, 0, 15, 0],

[ 0, 0, 0, 0, 0],

[ 0, 16, 0, 25, 0]])

>>> adj += adj.T

>>> adj

array([[ 0, 0, 0, 10, 0],

[ 0, 0, 0, 0, 16],

[ 0, 0, 0, 15, 0],

[10, 0, 15, 0, 25],

[ 0, 16, 0, 25, 0]])

weixin151云匹面粉直供微信小程序+springboot后端毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
weixin295微信小程序选课系统+ssm后端毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值