题目:
给定两个二叉树,想象当你将它们中的一个覆盖到另一个上时,两个二叉树的一些节点便会重叠。
你需要将他们合并为一个新的二叉树。合并的规则是如果两个节点重叠,那么将他们的值相加作为节点合并后的新值,否则不为 NULL 的节点将直接作为新二叉树的节点。
示例 1:
输入:
Tree 1 Tree 2
1 2
/ \ / \
3 2 1 3
/ \ \
5 4 7
输出:
合并后的树:
3
/ \
4 5
/ \ \
5 4 7
注意: 合并必须从两个树的根节点开始。
解答:
class Solution {
public TreeNode mergeTrees(TreeNode t1, TreeNode t2) {
if (t1 == null) {
return t2;
}
if (t2 == null) {
return t1;
}
t1.val += t2.val;
t1.left = mergeTrees(t1.left, t2.left);
t1.right = mergeTrees(t1.right, t2.right);
return t1;
}
}
心得体会:好吧,我承认这个题不怎么会……
在网上看了Solution后写了一个递归的解法。
可以这么认为:如果要合并两棵树,就是把根节点的两个值相加,合并后的左子树就是节点t1, t2左子树合并的结果,合并后的右子树是节点t1, t2右子树合并合并的结果;结束条件是有一个节点为空,操作是返回另一个节点。
对一颗二叉树而言,只需要考虑3个方面:根节点,左子树,右子树;对根节点进行操作,然后左子树和右子树都递归解决即可(就是左子树和右子树也可以调用这个函数),不需要考虑具体栈上是怎么实现,又是怎么返回的。