java 位运算应用_java位运算应用

位移动运算符:

<

比如:3 <<2(3为int型)

1)把3转换为二进制数字0000 0000 0000 0000 0000 0000 0000 0011,

2)把该数字高位(左側)的两个零移出。其它的数字都朝左平移2位,

3)在低位(右側)的两个空位补零。则得到的终于结果是0000 0000 0000 0000 0000 0000 0000 1100,

转换为十进制是12。

同理,>>表示右移. 右移一位表示除2.

位运算:

位运算符包含: 与(&)、非(~)、或(|)、异或(^)

&:当两边操作数的位同一时候为1时,结果为1,否则为0。如1100&1010=1000

| :当两边操作数的位有一边为1时,结果为1。否则为0。如1100|1010=1110

~:0变1,1变0

^:两边的位不同一时候。结果为1。否则为0.如1100^1010=0110

位运算与位移动执行符的一个场景:

HashMap的功能是通过“键(key)”可以高速的找到“值”。以下我们分析下HashMap存数据的基本流程:

1、当调用put(key,value)时,首先获取key的hashcode,int hash = key.hashCode();

2、再把hash通过一下运算得到一个int h.

hash ^= (hash >>> 20) ^ (hash >>> 12);

int h = hash ^ (hash >>> 7) ^ (hash >>> 4);

为什么要经过这种运算呢?这就是HashMap的高明之处。先看个样例。一个十进制数32768(二进制1000 0000 0000 0000),经过上述公式运算之后的结果是35080(二进制1000 1001 0000 1000)。看出来了吗?也许这样还看不出什么,再举个数字61440(二进制1111 0000 0000 0000)。运算结果是65263(二进制1111 1110 1110 1111)。如今应该非常明显了,它的目的是让“1”变的均匀一点。散列的本意就是要尽量均匀分布。

3、得到h之后。把h与HashMap的承载量(HashMap的默认承载量length是16,能够自己主动变长。在构造HashMap的时候也能够指定一个长 度。这个承载量就是上图所描写叙述的数组的长度。)进行逻辑与运算,即 h & (length-1),这样得到的结果就是一个比length小的正数。我们把这个值叫做index。事实上这个index就是索引将要插入的值在数组中的 位置。

第2步那个算法的意义就是希望能够得出均匀的index。这是HashTable的改进,HashTable中的算法仅仅是把key的

hashcode与length相除取余。即hash % length。这样有可能会造成index分布不均匀。

另一点须要说明,HashMap的键能够为null,它的值是放在数组的第一个位置。

4、我们用table[index]表示已经找到的元素须要存储的位置。先推断该位置上有没有元素(这个元素是HashMap内部定义的一个类Entity, 基本结构它包括三个类,key,value和指向下一个Entity的next),没有的话就创建一个Entity对象,在 table[index]位置上插入。这样插入结束;假设有的话,通过链表的遍历方式去逐个遍历,看看有没有已经存在的key,有的话用新的value替 换老的value。假设没有。则在table[index]插入该Entity,把原来在table[index]位置上的Entity赋值给新的

Entity的next。这样插入结束。

以下解说一下原码->反码->补码之间的相互关系

[-3]反=[10000011]反=11111100

原码            反码

负数的补码是将其原码除符号位之外的各位求反之后在末位再加1。

[-3]补=[10000011]补=11111101

原码          补码

也就是说原码转换成补码是先原码  反码 最后+1成补码。位运算都是补码运算的,所以位运算后要再取反+1才得到真正的原码。

应用举例

(1) 推断int型变量a是奇数还是偶数

a&1  = 0 偶数

a&1 =  1 奇数

(2) 取int型变量a的第k位 (k=0,1,2……sizeof(int))。即a>>k&1

(3) 将int型变量a的第k位清0。即a=a&~(1 <

(4) 将int型变量a的第k位置1, 即a=a ¦(1 <

(5) int型变量循环左移k次,即a=a < >16-k  (设sizeof(int)=16)

(6) int型变量a循环右移k次,即a=a>>k ¦a < <16-k  (设sizeof(int)=16)

(7)整数的平均值

对于两个整数x,y,假设用 (x+y)/2 求平均值。会产生溢出。由于 x+y 可能会大于INT_MAX,可是我们知道它们的平均值是肯定不会溢出的。我们用例如以下算法:

int average(int x, int y)  //返回X,Y 的平均值

{

return (x&y)+((x^y)>>1);

}

(8)推断一个整数是不是2的幂,对于一个数 x >= 0,推断他是不是2的幂

boolean power2(int x)

{

return ((x&(x-1))==0)&&(x!=0)。

}

(9)不用temp交换两个整数

void swap(int x , int y)

{

x ^= y;

y ^= x;

x ^= y;

}

(10)计算绝对值

int abs( int x )

{

int y ;

y = x >> 31 ;

return (x^y)-y ;        //or: (x+y)^y

}

(11)取模运算转化成位运算 (在不产生溢出的情况下)

a % (2^n) 等价于 a & (2^n - 1)

(12)乘法运算转化成位运算 (在不产生溢出的情况下)

a * (2^n) 等价于 a < < n

(13)除法运算转化成位运算 (在不产生溢出的情况下)

a / (2^n) 等价于 a>> n

例: 12/8 == 12>>3

(14) a % 2 等价于 a & 1

(15) if (x == a) x= b;

else x= a;

等价于 x= a ^ b ^ x;

(16) x 的 相反数 表示为 (~x+1)

实例

功能              ¦          演示样例            ¦    位运算

----------------------+---------------------------+--------------------

去掉最后一位          ¦ (101101->10110)          ¦ x >> 1

在最后加一个0        ¦ (101101->1011010)        ¦ x < < 1

在最后加一个1        ¦ (101101->1011011)        ¦ x < < 1+1

把最后一位变成1      ¦ (101100->101101)          ¦ x ¦ 1

把最后一位变成0      ¦ (101101->101100)          ¦ x ¦ 1-1

最后一位取反          ¦ (101101->101100)          ¦ x ^ 1

把右数第k位变成1      ¦ (101001->101101,k=3)      ¦ x ¦ (1 < < (k-1))

把右数第k位变成0      ¦ (101101->101001,k=3)      ¦ x & ~ (1 < < (k-1))

右数第k位取反        ¦ (101001->101101,k=3)      ¦ x ^ (1 < < (k-1))

取末三位              ¦ (1101101->101)            ¦ x & 7

取末k位              ¦ (1101101->1101,k=5)      ¦ x & ((1 < < k)-1)

取右数第k位          ¦ (1101101->1,k=4)          ¦ x >> (k-1) & 1

把末k位变成1          ¦ (101001->101111,k=4)      ¦ x ¦ (1 < < k-1)

末k位取反            ¦ (101001->100110,k=4)      ¦ x ^ (1 < < k-1)

把右边连续的1变成0    ¦ (100101111->100100000)    ¦ x & (x+1)

把右起第一个0变成1    ¦ (100101111->100111111)    ¦ x ¦ (x+1)

把右边连续的0变成1    ¦ (11011000->11011111)      ¦ x ¦ (x-1)

取右边连续的1        ¦ (100101111->1111)        ¦ (x ^ (x+1)) >> 1

去掉右起第一个1的左边 ¦ (100101000->1000)        ¦ x & (x ^ (x-1))

推断奇数      (x&1)==1

推断偶数 (x&1)==0

比如求从x位(高)到y位(低)间共同拥有多少个1

public static int FindChessNum(int x, int y, ushort k)

{

int re = 0;

for (int i = y; i <= x; i++)

{

re += ((k >> (i - 1)) & 1);

}

return re;

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值