1. 数据删除策略
- 对于设置了有时效性的key来说,过期了,什么时候去删除,也有多种策略。
- 有可能,有一个定时器,到期了,立马去删除。
- 有可能,有人要用的时候,检查一下过期没有,过期了那就顺便把它删除了。
- 也有可能,定期去随机删除。
1.1 定时删除
- 创建一个定时器,当key设置有过期时间,且过期时间到达时,由定时器任务立即执行对键的删除操作
- 优点:节约内存,到时就删除,快速释放掉不必要的内存占用
- 缺点:CPU压力很大,无论CPU此时负载量多高,均占用CPU,会影响redis服务器响应时间和指令吞吐量
- 总结:用处理器性能换取存储空间(拿时间换空间)
1.2 惰性删除
- 数据到达过期时间,不做处理。等下次访问该数据时
- 如果未过期,返回数据
- 发现已过期,删除,返回不存在
- 优点:节约CPU性能,发现必须删除的时候才删除
- 缺点:内存压力很大,出现长期占用内存的数据
- 总结:用存储空间换取处理器性能(拿时间换空间)
1.3 定期删除
- 简单来说,就是定期随机检测多个DB被设为
expire
的key,检查是否存在过期。如果当前DB被删除的个数大于某个阈值,则会在当前DB再随机检测一轮,直到被删除的个数没有大于阈值。而每期都删除一点,下一期接着上一期的继续检测。如此就可以折中,既不会垃圾累积过多,也不会占用CPU资源过多。 - 周期性轮询redis库中的时效性数据,采用随机抽取的策略,利用过期数据占比的方式控制删除频度
- 特点1:CPU性能占用设置有峰值,检测频度可自定义设置
- 特点2:内存压力不是很大,长期占用内存的冷数据会被持续清理
- 总结:周期性抽查存储空间expireIfNeeded()(随机抽查,重点抽查)
1.4 删除策略比对
删除策略 | 内存 | CPU资源 | 总结 |
---|---|---|---|
定时删除 | 节约内存 | 不分时段占用CPU资源,频度高 | 拿时间换空间 |
惰性删除 | 内存占用严重 | 延时执行,CPU利用率高 | 拿空间换时间 |
定期删除 | 内存定期随即清理 | 每秒花费固定的CPU资源维护内存 | 随机抽查,重点抽查 |
2. 逐出算法
2.1 新数据进入内存,内存不足怎么办?
- Redis使用内存存储数据,在执行每一个命令前,会调用
freeMemoryIfNeeded()
检测内存是否充足。 - 如果内存不满足新加入数据的最低存储要求,Redis会临时删除一些数据,为当前数据腾出空间。清理数据的策略叫做逐出算法。
- 注意:逐出数据的过程不是100%能够清理出足够的可使用的内存空间,如果不成功则反复执行。当对所有数据尝试完毕后,如果不能达到内存清理的要求,将出现错误信息。
2.2 相关配置
- 最大可使用内存。 占用物理内存的比例,默认值为0,表示不限制。生产环境中根据需求设定,通常设置在50%以上。
maxmemory
- 每次选取待删除数据的个数。选取数据时并不会全库扫描,导致严重的性能消耗,降低读写性能。因此采用随机获取数据方式作为待检测删除数据
maxmemory-samples
- 删除策略。达到最大内存后的,对被挑选出来的数据进行删除的策略。默认为
noeviction
maxmemory-policy
2.3 影响数据逐出的相关配置
- 检测易失数据(可能会过期的数据集)
volatile-lru
:挑选最近最少使用的数据淘汰volatile-lfu
:挑选最近使用次数最少的数据淘汰volatile-ttl
:挑选将要过期的数据淘汰volatile-random
:任意选择数据淘汰
- 检测全库数据(所有数据集)
allkeys-lru
:挑选最近最少使用的数据淘汰allkeys-lfu
:挑选最近使用次数最少的数据淘汰allkeys-random
:任意选择数据淘汰
- 放弃数据驱逐
no-enviction
(驱逐):禁止驱逐数据(redis4.0中默认策略),会引发错误OOM(Out Of Memory)
2.4 数据逐出策略配置依据
- 使用INFO命令输出监控信息,查询缓存 hit 和 miss 的次数,根据业务需求调优Redis配置