如何用计算机计算平均温差,传热平均温差的计算

本文详细介绍了传热过程中平均温度差Δtm的计算,重点讨论了并流和逆流情况下的对数平均温差(LMTD)和算术平均温差。并给出了相应的计算公式,指出算术平均温差在一定条件下与对数平均温差的差异。此外,还提到了修正系数在非纯逆流情况下的应用,以适应不同布置的换热器设计。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

传热平均温度差Δtm的计算: 传热过程的数学描述——热量衡算微分式

以并流情况为例,并作如下假设:(1)冷热流体的质量流量G1,G2以及比热容Cp1,Cp2是常数;(2)传热系数是常数;(3)换热器无散热损失;(4)换热面沿流动方向的导热量可以忽略不计。

在前面假设的基础上,并已知冷热流体的进出口温度,现在来看图中微元换热面dA一段的传热。温差为:

在固体微元面dA内,两种流体的换热量为:

对于热流体和冷流体:

可见,温差随换热面呈指数变化,则沿整个换热面对平均温差为:

其他过程和公式与并流是完全一样的,因此,最终仍然可以得到:

平均温差是换热器两端温差的对数平均值,称对数平均温差。并流逆流平均温差计算式相同,两端温差的计算方法不同。

并流:

逆流:

或者将对数平均温差写成如下统一形式(顺流和逆流都适用):

平均温差的另一种更为简单的形式是算术平均温差,即

算术平均温差相当于温度呈直线变化的情况,因此,总是大于相同进出口温度下的对数平均温差,当Δtmax/Δtmin≤2时,两者的差别小于4%;当Δtmax/Δtmin≤1.7时,两者的差别小于2.3%。 其他复杂布置时换热器平均温差的计算

对纯逆流(逆流的平均温差最大)的对数平均温差进行修正以获得其他情况下的平均温差。

是给定的冷热流体的进出口温度布置成逆流时的LMTD,ψ是小于1的修正系数。

023aedccab1000ef3bfcafad33037775.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值