Python--matplotlib绘图可视化知识点整理
参考matplotlib-绘制精美的图表
matplotlib.pyplot.plt参数介绍

matplotlib图标正常显示中文
为了在图表中能够显示中文和负号等,需要下面一段设置:

matplotlib inline和pylab inline
可以使用ipython --pylab打开ipython命名窗口。

这两个命令都可以在绘图时,将图片内嵌在交互窗口,而不是弹出一个图片窗口,但是,有一个缺陷:除非将代码一次执行,否则,无法叠加绘图,因为在这两种模式下,是要有plt出现,图片会立马show出来,因此:
推荐在ipython notebook时使用,这样就能很方便的一次编辑完代码,绘图。
为项目设置matplotlib参数
在代码执行过程中,有两种方式更改参数:使用参数字典(rcParams)
调用matplotlib.rc()命令 通过传入关键字元祖,修改参数
如果不想每次使用matplotlib时都在代码部分进行配置,可以修改matplotlib的文件参数。可以用matplot.get_config()命令来找到当前用户的配置文件目录。
配置文件包括以下配置项:
axex: 设置坐标轴边界和表面的颜色、坐标刻度值大小和网格的显示backend: 设置目标暑促TkAgg和GTKAggfigure: 控制dpi、边界颜色、图形大小、和子区( subplot)设置font: 字体集(font family)、字体大小和样式设置grid: 设置网格颜色和线性legend: 设置图例和其中的文本的显示line: 设置线条(颜色、线型、宽度等)和标记patch: 是填充2D空间的图形对象,如多边形和圆。控制线宽、颜色和抗锯齿设置等。savefig: 可以对保存的图形进行单独设置。例如,设置渲染的文件的背景为白色。verbose: 设置matplotlib在执行期间信息输出,如silent、helpful、debug和debug-annoying。xticks和yticks: 为x,y轴的主刻度和次刻度设置颜色、大小、方向,以及标签大小。

本文详细介绍了Python使用matplotlib进行数据可视化的关键知识点,包括脊椎图的设置、图像内嵌、参数配置、坐标轴范围调整、叠加图、文字注释、图例添加以及坐标轴的移动等。还提到了如何自定义线条颜色、标记、背景色,以及使用plt.subplot()和plt.axes()进行多图布局。文章旨在帮助读者掌握matplotlib绘图的实用技巧。
最低0.47元/天 解锁文章
488

被折叠的 条评论
为什么被折叠?



