instant-ngp获取视频或者图像相机位置信息colamp2nerf.py生成ransforms.json

遇到的问题:

在centos安装colamp需要装很多依赖,并且需要手动编译;
在unbntu上安装colamp、ffmpeg很方便,但是运行colamp2nerf.py会报错ERROR: failed to create sparse model,未解决。
在win上,安装ffmpeg和colmap可以直接使用,但是运行命令行会找不到colmap命令(可能环境变量未配置好)。

最终生成transforms.json办法:

  1. 视频作为输入时,直接运行colamp2nerf.py,ffmpeg可正常运行提取出图片;
  2. 在win上打开colmap,依次:
    1).新建项目
    在这里插入图片描述
    2).选择项目位置和照片位置,点击save保存
    在这里插入图片描述
    3).点击processing->feature extraction进行特征提取
    4).点击processing->feature match进行特征匹配
    5).点击Reconstruction->Start reconstruction开始重建
    6).最后点击File->export model as text将结果保存为文本(文件夹名称必须为colamp_text,对应colamp2nerf.py中的参数)
  3. 最后直接运行colamp2nerf.py,无需配置参数,py文件和colamp_text文件夹在同一目录下。

参考:英伟达的Nerf:instant_ngp在Windows10下的配置和使用–保姆级教学

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值