微型计算机常用数据结构和数据处理技术
3.1 数字滤波方法 5.程序判断滤波法 程序判断滤波可以根据经验有效地滤去信号的严重失真。 (1)限幅滤波 (2)限速滤波 3.1 数字滤波方法 5.程序判断滤波法 (1)限幅滤波 限幅滤波限制的是采样输入信号的上下限幅值,若取yH 为上限值,yL为下限值 当 y(n)≥yH时,取 y(n)= yH ; 当 y(n)≤yL时,取 y(n)= yL ; 当 yL < y(n)< yH时,取 y(n) 。 3.1 数字滤波方法 5.程序判断滤波法 (2)限速滤波 限速滤波限制的是两次相邻采样值的变化量。若取Δy0为两次相邻采样值之差的最大容许值,则: 当∣y(n)- y(n-1)∣≤Δy0时,取y(n); 当∣y(n)- y(n-1)∣>Δy0时,取y(n)= y(n-1) Δy0取决于采样周期T及被测参数y 应有的正常变化率 3.1 数字滤波方法 6.惯性滤波法 惯性数字滤波器可以比模拟滤波器有更好的滤波特性 例如: RC滤波器不可能对极低频率的信号进行滤波。 低通特性的一阶惯性数字滤波器则可 3.1 数字滤波方法 6.惯性滤波法 常用的RC低通滤波器的输入电压x(t)和输出电压y(t)的关系是: RC ·dy(t)/dt + y(t) = x(t) 将微分公式写成差分方程 RC(y(n)- y(n-1)) /Δt + y(n)= x(n) 稍加整理得 y(n)= a x(n) + b y(n-1) 其中,a 称为滤波系数,b = 1-a 3.1 数字滤波方法 根据惯性滤波器的频率特性,若滤波系数a越大,则带宽越窄,滤波频率也越低。 需要根据实际情况,适当选取a值, 使得: 被测参数既不出现明显的纹波, 反应又不太迟缓 3.2 数字滤波方法的选择 根据对象选择 根据干扰性质选择 3.2 数字滤波方法的选择 1.根据对象选择 变化比较缓慢的参数如温度: 程序判断滤波和惯性滤波; 变化比较快的参数如压力、流量: 算术平均、加权平均、防干扰平均滤波 纯迟延较大的被控对象:加权平均滤波; 3.2 数字滤波方法的选择 2.根据干扰性质选择 周期性干扰:平均值滤波法 偶然的脉冲干扰: 加权平均滤波法、限幅滤波法和防脉冲干扰平均值法 高频及低频的干扰信号:惯性滤波法 3.2 数字滤波方法的选择 采样次数N越大,滤波效果越好但花费的时间越长。 几种方法复合滤波效果要求更高更好 例如,先用程序判断,再用平均滤波。 3.2 数字滤波方法的选择 应该注意的是: 是否需要数字滤波,采用哪一种滤波方法 都只有经过实验调试才能最后确定 采用不适当的数字滤波可能适得其反 2.2 常用数据处理 ?1.系统误差补偿 系统误差定义: 在相同条件下,经过多次测量,数值大小和正负符号保持恒定的误差, 或按某种已知的规律变化的误差。 系统误差特点: 在一定的测量条件下,变化规律是可以掌握的,产生误差的原因一般也是知道的。 2.2 常用数据处理 ?1.系统误差补偿 通常认为,在系统的实际输入值x与测量输出值y 之间存在线性关系: (y-y0)/(y1-y0)=x/x1 式中: y0是实际输入值为0时的测量输出值; y1 是实际输入值为基准值x1时的测量输出值。 2.2 常用数据处理 ?1.系统误差补偿 基于这种线性关系,微机控制系统可以通过校准电路和程序的配合,对系统误差加以校正。 2.2 常用数据处理 ?1.系统误差补偿 系统在刚上电时或每隔一定时间进行一次校准。 校准时,先把开关接地,测出这时的输出值y0,然后把开关接基准值x1,测出输出值y1,并存放y0 和y1; 根据测得的输出值y,就可根据上述线性关系,通过程序计算得出实际的输入值x。 2.2 常用数据处理 ?1.系统误差补偿 采用这种方法测得的x,可以补偿输入电路、放大电路、A/D转换器本身的零点偏移及随时间、温度而发生的各种漂移变化的影响,与x1的精度也无关。从而提高了测量精度,降低了对电路器件的要求和硬件成本。 2.2 常用数据处理 ?1.系统误差补偿 简单的数字调零: 将测得的输出值y减去输入接地时测出的输出值y0,认为(y - y0)才与实际的输入值x相对应。 2.2 常用数据处理 ?1.系统误差补偿 传感器误差校正: 考虑到非电物理量转换为电信号环节即传感器引入的误差,可接入