文章目录
Flink核心概念和编程模型
Flink分层架构
Flink核心组件
- 核心组件

Flink分层架构

- Stateful Stream Processing
- 位于最底层,是core API的底层实现
- Processing Function
- 利用低阶,构建一些新的组件或者算子
- 灵活性高,但是开发复杂
- Core APIS
- DataSet API(批处理)
- DataStream API(流处理)
- Table API & SQL
- SQL构建在Table之上,需要构建Table环境(不同类型的Table需要不同类型的Table环境)
- Table可以和DataStream或者DataSet互相转化
- Stream SQL最终会转化成流式的执行计划
Flink DataFlow
Flink DataFlow基本套路
- Flink DataFlow编程基本套路


- 并行化DataFlow

- 算子间数据传递模式
- One-to-One Streams(保持元素的分区和顺序)
- Redistrbuting Streams(改变流的分区)
(keyby() broadcas() rebanlance())
其他概念
Time

Window

statuful Operations

Checkpoints

- 基于chandy-lamport分布式一致性快照算法基础上实现的(https://zhuanlan.zhihu.com/p/53482103)
Savepoint

本文深入探讨了Apache Flink的核心架构与关键概念,包括其分层设计、核心组件如Stateful Stream Processing及Processing Function,以及DataFlow编程模型。文章还详细介绍了Flink的并行化处理、数据流传递模式、时间窗口、状态操作、检查点和保存点等高级特性。
8466

被折叠的 条评论
为什么被折叠?



