Java搭建Spark程序,提交到Yarn

本文介绍如何使用Java搭建Spark程序,并将其提交至Yarn进行WordCount任务的测试。通过Maven配置依赖,包括Spark核心、Spark SQL和Spark Streaming。提供了两种WordCount实现方式:JavaSparkContext和SparkSession,展示了从读取HDFS文件到处理数据并显示结果的完整流程。
摘要由CSDN通过智能技术生成

Java搭建Spark程序,提交到Yarn测试

Demo

  1. pow文件依赖
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <parent>
        <artifactId>home</artifactId>
        <groupId>com.sm</groupId>
        <version>1.0-SNAPSHOT</version>
    </parent>
    <modelVersion>4.0.0</modelVersion>

    <artifactId>wc</artifactId>

    <properties>
		<java.version>1.8</java.version>
        <spark.version>2.4.0</spark.version>
        <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
        <project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding>
    </properties>

    <dependencies>
        <!-- https://mvnrepository.com/artifact/org.apache.spark/spark-core_2.11 -->
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-core_2.11</artifactId>
            <version>${spark.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-sql_2.11</artifactId>
            <version>${spark.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-streaming_2.11</artifactId>
            <version>${spark.version}</version>
        </dependency>
    </dependencies>

    <build>
        <finalName>wc</finalName>
        <plugins>
            <plugin>
                <artifactId>maven-assembly-plugin</artifactId>
                <version>2.4</version>
                <configuration>
                    <classifier>dist</classifier>
                    <appendAssemblyId>true</appendAssemblyId>
                    <descriptorRefs>
                        <descriptor>jar-with-dependencies</descriptor>
                    </descriptorRefs>
                    <archive>
                        <manifest>
                            <mainClass>com.sm.wc.MainClass</mainClass>
                        </manifest>
                    </archive>
                </configuration>
                <executions>
                    <execution>
                        <id>make-assembly</id>
                        <phase>package</phase>
                        <goals>
                            <goal>single</goal>
                        </goals>
                    </execution>
                </executions>
            </plugin>
        </plugins>
    </build>

    <repositories>
        <repository>
            <id>nexus-aliyun</id>
            <name>Nexus aliyun</name>
            <url>http://maven.aliyun.com/nexus/content/groups/public</url>
        </repository>
    </repositories>

</project>
  1. 两种方式编写WordCount
  • JavaSparkContext方式
package com.sm.wc;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.api.java.function.VoidFunction;
import scala.Tuple2;

import java.util.Arrays;
import java.util.Iterator;

public class MainClass1 {
    public static void main(String[] args) {
        SparkConf conf = new SparkConf();
        conf.set("spark.master", "yarn");
        conf.set("spark.submit.deployMode", "cluster");
        conf.set("spark.app.name", "wc");
        conf.set("spark.yarn.jars", "hdfs://bigdata-namenode-node1:8020/app/jars/lib/wc.jar");

        JavaSparkContext jsc = new JavaSparkContext(conf);
        JavaPairRDD<String, Integer> counts = jsc.textFile("hdfs://bigdata-namenode-node1:8020/hData/wc.txt").flatMap(new FlatMapFunction<String, String>() {
            private static final long serialVersionUID = 919178903075273415L;

            @Override
            public Iterator<String> call(String line) throws Exception {
                return Arrays.asList(line.split(" ")).iterator();
            }
        })
                .mapToPair(new PairFunction<String, String, Integer>() {
                    private static final long serialVersionUID = 6401760548427081598L;

                    @Override
                    public Tuple2<String, Integer> call(String value) throws Exception {
                        return Tuple2.apply(value, 1);
                    }
                })
                .reduceByKey(new Function2<Integer, Integer, Integer>() {
                    private static final long serialVersionUID = 7489138021965588041L;

                    @Override
                    public Integer call(Integer v1, Integer v2) throws Exception {
                        return v1 + v2;
                    }
                });

        counts.foreach(new VoidFunction<Tuple2<String, Integer>>() {
            private static final long serialVersionUID = 6487711132207646171L;

            @Override
            public void call(Tuple2<String, Integer> wc) throws Exception {
                System.out.println(wc._1 + ":" + wc._2);
            }
        });
    }
}
  • SparkSession方式
package com.sm.wc;

import org.apache.spark.api.java.function.*;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Encoders;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SparkSession;

import java.util.Arrays;
import java.util.List;

public class MainClass2 {
    public static void main(String[] args) {
        SparkSession spark = SparkSession.builder()
                .config("spark.master", "yarn")
                .config("spark.submit.deployMode", "cluster")
                .config("spark.app.name", "wc")
                .config("spark.yarn.jars", "hdfs://bigdata-namenode-node1:8020/app/jars/lib/wc.jar")
                .getOrCreate();

        Dataset<String> ds = spark.read().textFile("hdfs://bigdata-namenode-node1:8020/hData/wc.txt");
        //Dataset只有一列,默认这列叫value
        Dataset<String> words = ds.flatMap((FlatMapFunction<String, String>) line -> {
            List<String> list = Arrays.asList(line.split(" "));
            return list.iterator();
        }, Encoders.STRING());
        words .createOrReplaceTempView("words");
        Dataset<Row> result = spark.sql("SELECT value,COUNT(*) counts FROM words GROUP BY value ORDER BY counts DESC");
        result.show(100);

    }
}
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值