java median of two sorted arrays,Leetcode上的一道算法题(Median of Two Sorted Arrays)

描述:

There are two sorted arrays nums1 and nums2 of size m and n respectively.

Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)).

Example 1:

nums1 = [1, 3]

nums2 = [2]

The median is 2.0

Example 2:

nums1 = [1, 2]

nums2 = [3, 4]

The median is (2 + 3)/2 = 2.5

翻译过来就是,给定两个已经升序排序过的数组,求这两个数组的中位数;中位数的定义为把两个数组合并过后进行升序排序后,处于数组中间的那个数,此时如果合并后的数组元素个数为偶数,则为中间两个数的平均值。

初看起来这就是个寻找第k小数的问题,解决方案有很多,最简单的就是采用归并排序的思想把两个数组进行合并,然后取中间的数就可以了。但问题在于,这个题目限定了时间复杂度为O(log(m+n)),而合并算法的时间复杂度为O(nlogn),显然不合题意。另外一个方法是设置一个双指针,一开始都指向两个数组的开头,不停地比较两个指针指向的元素的大小,指向小元素的指针的往前移一个元素去追指向大元素的指针,一直移动(len1+len2)/2次后就能得到中位数,但是这个算法的时间复杂度仍然不符合题意,为O(n)

但是注意到这个题目给定的数组已经是排过序的了,算法导论中对order statistic问题进行过讨论,因此,在有序又要求log级的时间复杂度,可以考虑分治策略,采用二分法。

大方向定好了,但是并不清楚具体要怎么去完成这个二分法,我们应该对什么去做二分?其实这个题目需要找的就是第k小的元素问题,假设我们的第k小的数是在第一个数组中找了p次,然后在第二个数组中找了q次,那么满足关系:p+q=k。进一步的,寻找第k小的数的过程就是寻找p和q的过程,k我们是知道的,但是p和q是不知道的,因此事实上我们的目标就是去搜索p(找到了p就等于找到了q),因此我们二分法的目标,事实上就是二分k来找p。

我们先定义以下形式的函数用来寻找第k小的数:

findKth(nums1, nums2, start1, len1, start2, len2, k)

nums1和nums2表示原始的两个数组,start1、len1表示nums1数组中以start1位置开始、len1长度的一个子数组;start2、lens2表示nums2数组中以start2位置开始、len2长度的一个子数组;k表示从这两个子数组中找到第k小的数。之所以提供start1、len1、start2、len2,是因为经验告诉我们分治法解决问题都是递归的,我们在二分的时候就需要记录这些相关的数据。

我们的外层入口就应该是这样子的:

if(len1+len2是偶数) {

return (findKth(nums1, nums2, 0, len1, 0, len2, (len1+len2)/2) +

findKth(nums1, nums2, 0, len1, 0, len2, (len1+len2)/2 + 1)) / 2;

}

else {

return findKth(nums1, nums2, 0, len1, 0, len2 (len1+len2)/2);

}

下面就是具体对于findKth的实现了。

首先,我们知道,我们需要对k进行二分:

findKth(nums1, nums2, start1, len1, start2, len2, k) {

p = k / 2;

}

这个p怎么用呢?假设我们在nums1中取nums1[start1+p-1],就表示我们在nums1中“前进”了p个元素,且这p个元素是有序的,相应的,q = k - p,我们需要在nums2中前进q个元素:

findKth(nums1, nums2, start1, len1, start2, len2, k) {

p = k / 2;

q = k - p;

}

假如这个时候nums1[start1 + p - 1]等于nums2[start + q - 1],这说明kth = nums1[start1 + p - 1] = nums2[start + q - 1] = 第k小的数,为什么呢?这里要注意nums1和nums2都是有序的,因此它们的子数组也是有序的;假设把两个子数组数组合并,那么在nums1子数组中排在kth前面的数在合并后的数组中一定还是排在kth前面,同理在nums2子数组中排在kth前面的数在合并后的数组中也一定还是排在kth前面,它们的具体顺序我们不关心也不必关心,我们只需要知道这样一来在合并后的数组中就有p-1+q-1=k-2个数在kth前面,因此kth一定就是第k小的那个数。

如果nums1[start1 + p - 1]大于nums2[start + q - 1],这里就出现了一个需要注意的情况,这意味着nums2子数组中的前q个数一定都是小于nums1[start1 + p - 1]的(再次注意,nums1和nums2都是有序的),而q

findKth(nums1, nums2, start1, len1, start2, len2, k) {

p = k / 2;

q = k - p;

if(nums1[start1 + p - 1] == nums2[start2 + q - 1]) {

return nums1[start1 + p - 1];

}

else if(nums1[start1 + p - 1] > nums2[start2 + q - 1]) {

return findKth(nums1, nums2, start1, len1, start2 + q, len2 - q, k - q);

}

else if(nums1[start1 + p - 1] < nums2[start2 + q - 1]) {

return findKth(nums1, nums2, start1 + p, len1 - p, start2, len2, k - p);

}

}

上面的框架大致已经描述清楚了我们的二分搜索算法,下一步就需要考虑退出条件。

退出条件有这么一些:

在某一步搜索中子数组的长度为0了,这表示有一个数组中的元素完全被抛弃掉,此时另外一个子数组的第k个元素就是我们要求的第k小的元素;

在不满足1的情况下,出现k=1的情况,这表示需要在两个子数组中找第1小的元素,此时简单地比较一下两个子数组的第一个元素就行了;

nums1[start1 + p - 1] == nums2[start2 + q - 1]

因此可以进一步写成:

findKth(nums1, nums2, start1, len1, start2, len2, k) {

if(某个子数组的长度为零) {

return 另外一个子数组的第k个元素;

}

if(k == 1) {

return min(nums1[start1], nums2[start2]);

}

p = k / 2;

q = k - p;

if(nums1[start1 + p - 1] == nums2[start2 + q - 1]) {

return nums1[start1 + p - 1];

}

else if(nums1[start1 + p - 1] > nums2[start2 + q - 1]) {

return findKth(nums1, nums2, start1, len1, start2 + q, len2 - q, k - q);

}

else if(nums1[start1 + p - 1] < nums2[start2 + q - 1]) {

return findKth(nums1, nums2, start1 + p, len1 - p, start2, len2, k - p);

}

}

为了方便考虑问题,不失一般性,我们要求nums1永远是那个长度较短的数组:

findKth(nums1, nums2, start1, len1, start2, len2, k) {

if(len1 > len2) {

return findKth(nums2, nums1, start2, len2, start2, start1);

}

if(len1 == 0) {

return nums2[start2 + k - 1];

}

if(k == 1) {

return min(nums1[start1], nums2[start2]);

}

p = k / 2;

q = k - p;

if(nums1[start1 + p - 1] == nums2[start2 + q - 1]) {

return nums1[start1 + p - 1];

}

else if(nums1[start1 + p - 1] > nums2[start2 + q - 1]) {

return findKth(nums1, nums2, start1, len1, start2 + q, len2 - q, k - q);

}

else if(nums1[start1 + p - 1] < nums2[start2 + q - 1]) {

return findKth(nums1, nums2, start1 + p, len1 - p, start2, len2, k - p);

}

}

此外还有一个容易被忽略的边界问题,那就是p=k/2这一句,如果p大于len1的话,就会出现越界访问的问题,这个时候需要对其进行控制:

findKth(nums1, nums2, start1, len1, start2, len2, k) {

if(len1 > len2) {

return findKth(nums2, nums1, start2, len2, start2, start1);

}

if(len1 == 0) {

return nums2[start2 + k - 1];

}

if(k == 1) {

return min(nums1[start1], nums2[start2]);

}

p = min(k / 2, len1);

q = k - p;

if(nums1[start1 + p - 1] == nums2[start2 + q - 1]) {

return nums1[start1 + p - 1];

}

else if(nums1[start1 + p - 1] > nums2[start2 + q - 1]) {

return findKth(nums1, start1, len1, start2 + q, len2 - q, k - q);

}

else if(nums1[start1 + p - 1] > nums2[start2 + q - 1]) {

return findKth(nums1, start1 + p, len1 - p, start2, len2, k - p);

}

}

分析到这里,基本上这个问题就解决了,不过需要说的是,对于p=min(k/2,len1)这一句,这里看起来应该就是二分法的比较关键的一个地方了,事实上我们把2换成3、4、5、6……都是可以的,因为二分法搜索事实上就是个碰运气的过程,不过需要注意的是,这里p不能为0,否则在nums1中等于是没有做“前进”的动作,这是不允许的,因此更加健壮的描述应该为:

p = min(max(k/2, 1), len1);

即二分过程中,每一次迭代至少要在nums1中“前进”一步。

整个程序的C++代码如下:

#include

class Solution {

private:

double findKth(vector& nums1, vector& nums2, int start1, int len1, int start2, int len2, int k) {

if (len1 > len2) {

return findKth(nums2, nums1, start2, len2, start1, len1, k);

}

if (len1 == 0) {

return nums2[start2 + k - 1];

}

if (k == 1) {

return min(nums1[start1], nums2[start2]);

}

int p1 = min(k / 2, len1);

int p2 = k - p1;

if (nums1[start1 + p1 - 1] > nums2[start2 + p2 - 1]) {

return findKth(nums1, nums2, start1, len1, start2 + p2, len2 - p2, k - p2);

}

else if(nums1[start1 + p1 - 1] < nums2[start2 + p2 - 1]){

return findKth(nums1, nums2, start1 + p1, len1 - p1, start2, len2, k - p1);

}

else {

return nums1[start1 + p1 - 1];

}

}

public:

double findMedianSortedArrays(vector& nums1, vector& nums2) {

int len = nums1.size() + nums2.size();

if (!(len & 0x01)) {

return (findKth(nums1, nums2, 0, nums1.size(), 0, nums2.size(), len / 2)

+ findKth(nums1, nums2, 0, nums1.size(), 0, nums2.size(), len / 2 + 1)

) / 2.0f;

}

else {

return findKth(nums1, nums2, 0, nums1.size(), 0, nums2.size(), len / 2 + 1);

}

}

};

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值