signature=abd8cd1a36813baf302372c3086606a4,Detection & Deletion of DDOS Attacks Using Multi-clusteri...

摘要:

Wireless sensor networks are mostly vulnerable to attacks. It's difficult to find /track attacker due to mobility. Indeed, the numbers of new attacks as well as their sophistication are continuously increasing. Diametrically opposite strategy has been studied in the last few years such as unsupervised anomaly detection (UAD). UAD uses data mining techniques to extract patterns and uncover similar structures "hidden" in unlabeled traffic or unknown nature (attack or normal operation traffic), without relying on Digital signatures or baseline traffic profiles. Based on the observation that attacks, particularly the most difficult ones to detect are contained in a small fraction of traffic flows with respect to normal operation traffic so we propose a paramount advantage of unsupervised, knowledge- independent detection algorithms based on clustering. The main aim is to combine the clustering results provided by multiple independent partitions of the same set of flows and filtering out biased groupings. We focus on the detection and characterization of standard and well-known attacks, which facilitates the interpretation of results. Denial of service (DOS), distributed DOS (DDOS), network scans, and worm propagation are examples of such standard network attacks. The approach can easily be generalized to detect other kinds of anomalies and attacks.

展开

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值