.
实验四Matlab神经网络以及应用于汽油辛烷值预测
一、实验目的
1. 掌握MATLAB创建BP神经网络并应用于拟合非线性函数
2. 掌握MATLAB创建REF神经网络并应用于拟合非线性函数
3. 掌握MATLAB创建BP神经网络和REF神经网络解决实际问题
4. 了解MATLAB神经网络并行运算
二、实验原理
2.1 BP神经网络
2.1.1 BP神经网络概述
BP神经网络Rumelhard和McClelland于1986年提出。从结构上将,它是一种典型的多层前向型神经网络,具有一个输入层、一个或多个隐含层和一个输出层。层与层之间采用权连接的方式,同一层的神经元之间不存在相互连接。理论上已经证明,具有一个隐含层的三层网络可以逼近任意非线性函数。
隐含层中的神经元多采用S型传递函数,输出层的神经元多采用线性传递函数。图1所示为一个典型的BP神经网络。该网络具有一个隐含层,输入层神经元数据为R,隐含层神经元数目为S1,输出层神经元数据为S2,隐含层采用S型传递函数tansig,输出层传递函数为purelin。
图1含一个隐含层的BP网络结构
2.1.2 BP神经网络学习规则
BP网络是一种多层前馈神经网络,其神经元的传递函数为S型函数,因此输出量为0到1之间的连续量,它可以实现从输入到输出的任意的非线性映射。由于其权值的调整是
.