第十五章 表示学习
2020-3-24 深度学习笔记15 - 表示学习 1(贪心逐层无监督预训练-目前已经不太使用)
2020-3-25 深度学习笔记15 - 表示学习 2(迁移学习和领域自适应)
半监督解释因果关系Causal Factors - 生成式对抗网络
这章的翻译让初学者看得有点累,只好把原文找出来对比看。
表示学习的一个重要问题是”什么原因能够使一个表示比另一个表示更好?”
One hypothesis is that an ideal representation is one in which the features within the representation correspond to the underlying causes of the observed data, with separate features or directions in feature space corresponding to different causes, so that the representation disentangles the causes from one another.
一种假设是,理想表示中的特征对应到观测数据的潜在成因,特征空间中不同的特征或方向对应着不同的原因,从而表示能够区分这些原因。
即, 如果 y y y是 x x x的重要成因之一,那么表示 p ( x ) p(x) p(x)也可能是计算 p ( y ∣ x ) p(y \mid x) p(y∣x)的一种良好表示。
能够清楚地分离出潜在causal factors 的表示可能并不一定易于建模。
if a representation h represents many of the underlying causes of the observed x
, and the outputs y are among the most salient causes, then it is easy to predict y from h
如果表示向量 h h h
本文探讨了表示学习中的一个重要问题,即如何寻找能够反映观测数据潜在成因的表示。生成式对抗网络(GANs)被提出作为一种识别显著模式的方法,用于半监督学习中,通过训练生成模型欺骗前馈分类器来识别结构化模式。学习潜在的因果因素对于模型的鲁棒性至关重要,特别是在因果关系正确建模的情况下。
最低0.47元/天 解锁文章
988

被折叠的 条评论
为什么被折叠?



