2020-3-26 深度学习笔记15 - 表示学习 3(半监督解释因果关系causal factors -生成式对抗网络)

本文探讨了表示学习中的一个重要问题,即如何寻找能够反映观测数据潜在成因的表示。生成式对抗网络(GANs)被提出作为一种识别显著模式的方法,用于半监督学习中,通过训练生成模型欺骗前馈分类器来识别结构化模式。学习潜在的因果因素对于模型的鲁棒性至关重要,特别是在因果关系正确建模的情况下。
摘要由CSDN通过智能技术生成

第十五章 表示学习

官网
英文

2020-3-24 深度学习笔记15 - 表示学习 1(贪心逐层无监督预训练-目前已经不太使用)
2020-3-25 深度学习笔记15 - 表示学习 2(迁移学习和领域自适应)

半监督解释因果关系Causal Factors - 生成式对抗网络

这章的翻译让初学者看得有点累,只好把原文找出来对比看。

表示学习的一个重要问题是”什么原因能够使一个表示比另一个表示更好?”

One hypothesis is that an ideal representation is one in which the features within the representation correspond to the underlying causes of the observed data, with separate features or directions in feature space corresponding to different causes, so that the representation disentangles the causes from one another.
一种假设是,理想表示中的特征对应到观测数据的潜在成因,特征空间中不同的特征或方向对应着不同的原因,从而表示能够区分这些原因。
即, 如果 y y y x x x的重要成因之一,那么表示 p ( x ) p(x) p(x)也可能是计算 p ( y ∣ x ) p(y \mid x) p(yx)的一种良好表示。

能够清楚地分离出潜在causal factors 的表示可能并不一定易于建模。

if a representation h represents many of the underlying causes of the observed x
, and the outputs y are among the most salient causes, then it is easy to predict y from h
如果表示向量 h h h

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值