2020-3-27 深度学习笔记15 - 表示学习 4(分布式表示)

分布式表示是表示学习中的重要工具,通过组合元素实现概念描述,能有效应对高维问题和局部泛化。相比非分布式表示,如聚类算法、k-最近邻等,分布式表示允许参数共享,提供非局部泛化能力和统计优势,尤其在处理复杂结构时。生成模型能学习到分布式表示,通过向量操作实现不同特征的区分,如性别和眼镜的组合。
摘要由CSDN通过智能技术生成

第十五章 表示学习

官网
英文

2020-3-24 深度学习笔记15 - 表示学习 1(贪心逐层无监督预训练-目前已经不太使用)
2020-3-25 深度学习笔记15 - 表示学习 2(迁移学习和领域自适应)
2020-3-26 深度学习笔记15 - 表示学习 3(半监督解释因果关系causal factors -生成式对抗网络)

分布式表示Distributed Representation

分布式表示的概念(由很多元素组合的表示,这些元素之间可以设置成可分离的)是表示学习最重要的工具之一。 分布式表示非常强大,因为他们能用具有 k k k个值的 n

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值