第十五章 表示学习
2020-3-24 深度学习笔记15 - 表示学习 1(贪心逐层无监督预训练-目前已经不太使用)
2020-3-25 深度学习笔记15 - 表示学习 2(迁移学习和领域自适应)
2020-3-26 深度学习笔记15 - 表示学习 3(半监督解释因果关系causal factors -生成式对抗网络)
分布式表示Distributed Representation
分布式表示的概念(由很多元素组合的表示,这些元素之间可以设置成可分离的)是表示学习最重要的工具之一。 分布式表示非常强大,因为他们能用具有 k k k个值的 n
分布式表示是表示学习中的重要工具,通过组合元素实现概念描述,能有效应对高维问题和局部泛化。相比非分布式表示,如聚类算法、k-最近邻等,分布式表示允许参数共享,提供非局部泛化能力和统计优势,尤其在处理复杂结构时。生成模型能学习到分布式表示,通过向量操作实现不同特征的区分,如性别和眼镜的组合。
最低0.47元/天 解锁文章
27万+

被折叠的 条评论
为什么被折叠?



