2020-4-1 深度学习笔记16 - 结构化概率模型 3 (从图模型中采样,结构化建模的优势,学习依赖关系)

本文介绍了深度学习中的结构化概率模型,包括从图模型中进行采样,强调了结构化建模在降低表示、学习和推断成本方面的优势,并探讨了学习依赖关系,指出潜变量在描述复杂依赖和减少表示成本中的重要作用。
摘要由CSDN通过智能技术生成

第十六章 深度学习中的结构化概率模型

中文
英文

2020-3-29 深度学习笔记16 - 结构化概率模型 1 (非结构化建模的挑战-内存要求大/统计销量低/运行时间长)
2020-3-30 深度学习笔记16 - 结构化概率模型 2 (使用图描述模型结构)

从图模型中采样

图模型简化了从模型中采样的过程。

有向图模型的一个优点是,可以通过一个简单高效的过程从模型所表示的联合分布中产生样本,这个过程被称为原始采样

原始采样的基本思想是将图中的变量 x i x_i xi使用拓扑排序,使得对于所有 i i i j j j, 如果 x i x_i xi x j x_j xj的一个父亲结点,则 j j j大于 i i i。 然后可以按此顺序对变量进行采样。

因此,我们可以首先采 x 1 ∼ P ( x 1 ) x_1\sim P(x_1) x1P(x1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值