第十六章 深度学习中的结构化概率模型
2020-3-29 深度学习笔记16 - 结构化概率模型 1 (非结构化建模的挑战-内存要求大/统计销量低/运行时间长)
2020-3-30 深度学习笔记16 - 结构化概率模型 2 (使用图描述模型结构)
从图模型中采样
图模型简化了从模型中采样的过程。
有向图模型的一个优点是,可以通过一个简单高效的过程从模型所表示的联合分布中产生样本,这个过程被称为原始采样。
原始采样的基本思想是将图中的变量 x i x_i xi使用拓扑排序,使得对于所有 i i i和 j j j, 如果 x i x_i xi是 x j x_j xj的一个父亲结点,则 j j j大于 i i i。 然后可以按此顺序对变量进行采样。
因此,我们可以首先采 x 1 ∼ P ( x 1 ) x_1\sim P(x_1) x1∼P(x1
本文介绍了深度学习中的结构化概率模型,包括从图模型中进行采样,强调了结构化建模在降低表示、学习和推断成本方面的优势,并探讨了学习依赖关系,指出潜变量在描述复杂依赖和减少表示成本中的重要作用。
最低0.47元/天 解锁文章
422

被折叠的 条评论
为什么被折叠?



