matlab递推平方根算法,数论篇2——快速幂全解(模平方根算法)

模平方根算法

求a的b次方有库函数 pow(a, b),可是它返回值是double类型,而且在不同开发环境下,数据有精度误差(比如某DEV,详见),如果自己写for循环,当b特别大时,超范围、超时都妥妥的。所以,就有了模平方根算法,也就是通常说的快速幂。

原理:

b8396f2c93abdf4c4ad81f8ee12e76b4.png

//递归写法

int pow_power(int a, int b,int MOD){//a的b次方

if(b == 0) return 1;int res = pow_power(a, b/2);

res= res * res %MOD;if(b&1) res = res * a %MOD;returnres;

}//迭代写法

int quickPower(int x, int n, intmod) {int t = x, res = 1;while(n) {if (n & 1)

res= ((res % mod) * (t % mod)) %mod;

t= ((t % mod) * (t % mod)) %mod;

n>>= 1;

}return res %mod;

}

根据原理,还可以写出来快速乘(龟速乘),在乘法会爆long long范围时,只能这样做了。

int mul(int a, int b, int p){//快速乘,计算a*b%p

int res = 0;while(b){if(b & 1) res = (ret + a) %p;

a= (a + a) %p;

b>>= 1;

}returnres;

}

高精度快速幂

上述算法,如果数据级别较大,改用long long,但当需要处理大于10^10的数据时,依然需要实现高精度快速幂。

一个简单的板子,没有做取模,位数限制在了500位,根据题目要求可灵活修改。

#include #include#include

using namespacestd;int a[1001],b[1001], res[1001], temp[1001];void carry(int*arr) {for (int i = 0; i < 500; i++) {

arr[i+ 1] += arr[i] / 10;

arr[i]%= 10;

}

}void multi(int* a, int* b, int*res) {

memset(temp,0, sizeof(temp));for (int i = 0; i < 500; i++) {for (int j = 0; j < 500; j++) {

temp[i+ j] += a[j] *b[i];

}

}

carry(temp);

memcpy(res, temp,sizeof(temp));

}void quick_power(int *a,intk) {

res[0] = 1;while(k) {if (k & 1)

multi(res, a, res);

k>>= 1;if(k)

multi(a, a, a);

}

}intmain() {int p, k = 1;strings;

cin>>s;for (int i = 0; i < s.length(); i++) {

a[i]= s[s.length() - 1 - i] - '0';

}

cin>>p;

quick_power(a, p);for (int i = 499; i >= 0; i--, k++) {

cout<

}

cout<

}

矩阵快速幂

首先要了解:矩阵乘法

5c73329f02295c1f85292cabcd01ec9c.png

//Amn;Bnm

int** MatMulti(int **A, int **B, int m, intn) {int **C = new int*[n + 1];for (int i = 1; i <= n; i++) {

C[i]= new int[n + 1];

memset(C[i],0, sizeof(int)*(n + 1));

}for (int i = 1; i <= m; i++) {for (int j = 1; j <= m; j++) {for (int k = 1; k <= n; k++) {if (A[i][k] == 0 || B[k][j] == 0)continue;

C[i][j]+= A[i][k] *B[k][j];

}

}

}returnC;

}

上面只是简单的计算矩阵的乘积,会感觉很抽象,因为上述矩阵并没有具体的含义。

以常见的斐波那契数列为例:

F[n] = F[n-1] + F[n-2]. 由 F[0] = 0, F[1] = 1,可以递推后面的所有数。

求第i项的复杂度是 O(n);效率太低了。对于 n 的规模较大的题目无法在规定时间内求出。

把斐波那契数列的递推式表示成矩阵就是:

b226963065d8741b059b9d2f297ef545.png

e1c8bcf88fce13139861e88f9423dc62.png记作矩阵A

于是有

b33d95f9082df2be24d883976b8a7a28.png

所以只要求出来A^n,就可以求出Fn了。

题目给了一个更简便的递推式:

b6b5d6837d469f1b7ddac5e8e4924ba2.png

1e602274cfabd59a8f34096e22e6e29de51.jpg

c612a4607fcdb904751e455455a93214477.jpg

#include

using namespacestd;void initialize(int m[][2]) {

m[0][0] = 1; m[0][1] = 1; m[1][0] = 1; m[1][1] = 0;

}void MatrixMulti(int m1[][2],int m2[][2],int m[][2]) {int t[2][2] = {0};for (int i = 0; i < 2; i++) {for (int j = 0; j < 2; j++) {for (int k = 0; k < 2; k++) {

t[i][j]= (t[i][j] + m1[i][k]%10000 * m2[k][j]%10000) % 10000;

}

}

}for (int i = 0; i < 2; i++) {for (int j = 0; j < 2; j++) {

m[i][j]=t[i][j];

}

}

}int MatrixQuickPower(int m[][2],intn) {int res[2][2] = { {1,0},{0,1} };while(n) {if (n & 1)

MatrixMulti(res, m, res);

MatrixMulti(m, m, m);

n>>= 1;

}return res[0][1];

}intmain() {int n, m[2][2];while (cin >>n) {if (n == -1)break;

initialize(m);

cout<< MatrixQuickPower(m, n) <

}return 0;

}

View Code

矩阵快速幂是用来求解递推式的,所以第一步先要列出递推式:

比如:F(n)=F(n-1)+F(n-2)

第二步是建立矩阵递推式,找到转移矩阵:

419afa7ca39cfaff88e8aaf0dea73072.png

b33d95f9082df2be24d883976b8a7a28.png

接下来就可以求解了

一些小性质

(1)计算 指数运算 结果的位数

d44666f19622a95837f972367f1fe936.png

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值