百度翻译图片翻译API Python调用

该博客内容展示了如何使用Python调用百度翻译的图片翻译API,实现从指定文件夹中的图片批量获取翻译结果,并将翻译后的图片和识别结果分别保存为新的文件。代码实现了从文件夹读取图片、构造API请求参数、发送请求并处理返回的JSON数据,最后将翻译后的图片和识别结果以新文件形式保存到原文件夹。
摘要由CSDN通过智能技术生成

百度翻译的图片翻译API效果还不错,能实现整图的译文实景贴合,对于部分场景很有帮助,我也尝试着接入了下。

实现需求:本地的文件夹有n张图片,将这些图片挨个去请求百度的图片翻译API,然后将识别结果分别保存,翻译后的译文图单独存为文件,翻译后的识别结果和位置等json数据单独存为txt文件。

具体源码如下:

# -*- coding: utf-8 -*-

import requests
import random
import json
import os
import sys
import base64
from hashlib import md5

#定义APPID和appkey,需要去百度翻译开放平台申请
app_id = 'XXX'
app_key = 'XXX'

#从文件夹中取出图片文件名
ocr_path='/Users/lid/downloads/图片'
file_path=os.listdir(ocr_path)

#去掉取出来的.Ds_Store(针对Mac系统)
for x in file_path:
	if x.startswith('.'):
		file_path.remove(x)

#针对每一个图片文件,调图片翻译API得到翻译后的图片
for x in file_path:
	file_name = x

	#拼接请求接口
	endpoint = 'https://tuna.thesaurus.com'
	path = '/pageData/{}'.format(a)
	url = endpoint + path

	header={'user-agent':'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/100.0.4896.75 Safari/537.36'}
	cookies=
	
	#定义请求参数:源语言、目标语言、cuid、mac、paste、version
	from_lang = 'en'
	to_lang = 'zh'
	cuid = 'APICUID'
	mac = 'mac'
	version = 3
	paste = 1
	#paste=1表示返回整图贴合,0表示不返回,2表示返回块区擦除

	# 生成 salt and sign
	def get_md5(string, encoding='utf-8'):
	    return md5(string.encode(encoding)).hexdigest()

	def get_file_md5(file_name):
		with open(os.path.join(ocr_path,file_name), 'rb') as f:
			data = f.read()
			return md5(data).hexdigest()
	salt = random.randint(32768, 65536)
	sign = get_md5(app_id + get_file_md5(file_name) + str(salt) + cuid + mac + app_key)

	# 构建请求参数
	payload = {'from': from_lang, 'to': to_lang, 'appid': app_id, 'salt': salt, 'sign': sign, 'cuid': cuid, 'mac': mac, 'paste': paste, 'version': version}
	image = {'image': (os.path.basename(file_name), open(os.path.join(ocr_path,file_name), 'rb'), "multipart/form-data")}

	# 发送请求
	response = requests.post(url, params = payload, files = image)
	
	#输出请求返回的结果
	result = response.json()
	print(json.dumps(result,indent=4,ensure_ascii=False))

	#处理请求回来的json,得到base64图片
	trans= result['data']
	trans_end= trans['pasteImg']
	
	#base64图片保存成图片,存到原文件夹目录下,文件名后带_trans
	imgdata = base64.b64decode(trans_end)
	a=os.path.splitext(file_name)
	file_name1=a[0]+'_trans.jpg'
	with open(os.path.join(ocr_path,file_name1), 'wb') as f:
		f.write(imgdata)
    #识别结果保存成文本,存到原文件夹目录下,文件名后带_trans
	file_name2=a[0]+'_trans.txt'
	with open(os.path.join(ocr_path,file_name2), 'w+') as f:
		f.write(json.dumps(result,indent=4,ensure_ascii=False))

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值