例1:
clear,clc
fill([0,1,1,0],[0,0,1,0],'y');hold on%绘制积分区域
fill([0.55,0.6,0.6,0.55,0.55],[0,0,0.6,0.55,0],'r') %绘制单元条
gtext('y=x');
pause;
gtext('x=1');
pause;
gtext('y=0') %按照矩形区域调用 dblquad 函数,程序如下:
I=dblquad(@(x,y)(x.^2+y.^2).*(y-x<0),0,1,0,1)
或者 I=integral2(@(x,y)(x.^2+y.^2).*(y-x<0),0,1,0,1)
求得 I=0.3333
例2:

解法一(符号解):
clc, clear
syms r z theta
I1=int((r^2+z^2)*r, z, r^2,sqrt(2-r^2)); %求最内层积分
I2=int(I1,r,0,1); %求中间层的积分
I=int(I2,theta,0,2*pi) %求最终的积分结果
博客探讨积分的计算,通过例1和例2展示了quad与int在求解不定积分和定积分时的不同,强调quad专门用于定积分的求解,而int可以处理具有解析解的积分问题。
最低0.47元/天 解锁文章
5837

被折叠的 条评论
为什么被折叠?



