线性回归和逻辑回归是机器学习中基础又比较常用的内容。线性回归主要用来解决连续值预测的问题,而逻辑回归用来解决分类的问题,输出的属于某个类别的概率。
线性回归求解的是连续问题,而逻辑回归求解的是离散问题。

线性回归
通常来讲,线性回归,是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法。
表达形式为: y(x,w)=w0+w1x1+…+wnxn
如上图底部为线性回归,预测连续性结果。
逻辑回归
线性回归可以预测连续值,但是不能解决分类问题,我们需要根据预测的结果判定其属于正类还是负类。所以逻辑回归就是将线性回归的(−∞,+∞)结果,通过sigmoid函数映射到(0,1)之间。
表示形式为: p(x,w)= S(w0+w1x1+…+wnxn)
如上图顶部为逻辑回归,主要用于二分类问题(也可进行多分类)。
两者关系
可以认为逻辑回归的输入是线性回归的输出,将逻辑斯蒂函数(Sigmoid曲线)作用于线性回归的输出得到输出结果。

2521

被折叠的 条评论
为什么被折叠?



