复数可以写成 (A+Bi) 的常规形式,其中 A 是实部,B 是虚部,i 是虚数单位,满足 i
2
=−1;也可以写成极坐标下的指数形式 (R×e
(Pi)
),其中 R 是复数模,P 是辐角,i 是虚数单位,其等价于三角形式 R(cos§+isin§)。
现给定两个复数的 R 和 P,要求输出两数乘积的常规形式。
输入格式:
输入在一行中依次给出两个复数的 R
1
, P
1
, R
2
, P
2
,数字间以空格分隔。
输出格式:
在一行中按照 A+Bi 的格式输出两数乘积的常规形式,实部和虚部均保留 2 位小数。注意:如果 B 是负数,则应该写成 A-|B|i 的形式。
输入样例:
2.3 3.5 5.2 0.4
输出样例:
-8.68-8.23i
#include<bits/stdc++.h>
using namespace std;
int main()
{
double a, b, c, d;
cin >> a >> b >> c >> d;
double x = a*cos(b) * c*cos(d) - a*sin(b)*c * sin(d);
double y = a * cos(b)*c*sin(d) + a*c*cos(d)*sin(b);
if (x > -0.005 && x < 0)
x = 0;
if (y>=0)
cout << fixed << setprecision(2) << x << "+" << fixed << setprecision(2) << y << "i";
else if(y<0&&y>-0.005)
cout << fixed << setprecision(2) << x << "+" << "0.00i";
else
cout << fixed << setprecision(2) << x << fixed << setprecision(2) << y << "i";
return 0;
}
本文介绍了一种计算两个复数乘积的方法,通过将复数表示为极坐标下的指数形式进行计算,最后输出结果的常规形式。文章提供了一个C++代码示例,详细展示了如何根据给定的复数模和辐角计算它们的乘积。
3228

被折叠的 条评论
为什么被折叠?



