简介:《微波技术与天线》是通信工程专业的核心课程,由西安电子科技大学刘学观教授和郭辉萍教授主编,系统讲授微波频段电磁波的传播特性、微波器件设计及天线辐射与接收原理。本资料为该教材配套的课后习题答案,涵盖微波传输线、微波网络分析、史密斯圆图、驻波比计算、谐振器、滤波器、混频器等关键知识点,并深入解析偶极子天线、抛物面天线、微带天线等典型天线结构的设计与性能分析。同时结合电磁场理论与射频系统基础,强化学生对阻抗匹配、馈线设计、噪声系数等实际问题的理解。经过系统训练,学习者可全面提升微波系统建模与天线工程应用能力,适用于通信、雷达、遥感等方向的学习与教学辅助。
1. 微波技术基础概念与频率范围(300MHz–300GHz)
微波是电磁波谱中位于300 MHz至300 GHz之间的高频无线电波,对应波长从1米到1毫米,介于传统无线电波与红外光之间。该频段具备宽广的可用带宽和较强的方向性,支持高速数据传输与高分辨率雷达探测,广泛应用于5G毫米波、卫星通信、Wi-Fi 6E及雷达系统等前沿领域。
在物理特性上,微波以空间波为主进行视距传播,易受大气吸收(如60 GHz氧吸收峰、183 GHz水蒸气峰)和障碍物遮挡影响,需精确建模其衰减机制。同时,随着频率升高,器件尺寸减小,分布参数效应显著,电路设计由集总向分布元件过渡。
本章奠定微波工程的认知基石,解析频率-波长关系 $ \lambda = c/f $,阐明传播模式多样性与介质响应特性,为后续传输线理论、网络分析与天线设计提供必要支撑。
2. 微波传输线特性分析:波导、同轴线、微带线
微波传输线是现代高频系统中实现能量高效传递的核心结构,其性能直接影响整个系统的匹配状态、功率容量与信号完整性。在300 MHz至300 GHz的宽频范围内,不同类型的传输线因其几何构型和电磁边界条件的差异,表现出显著不同的传播行为。本章深入探讨三种典型微波传输线——波导、同轴线与微带线——从基本理论模型出发,解析其场分布特征、模态限制、损耗机制及实际设计中的工程权衡,并结合仿真工具进行定量验证。
2.1 微波传输线的基本理论模型
微波传输线的本质是在特定边界条件下引导电磁波定向传播的结构。为统一描述各类传输线的行为,必须建立通用的数学框架。这一节将从经典的 传输线方程 (Telegrapher’s Equation)入手,推导电压与电流沿线路的变化规律,进而引出 特性阻抗 与 传播常数 这两个决定系统性能的关键参数。最后通过行波与驻波的叠加关系,阐明 行驻波比 (VSWR)如何反映终端匹配程度。
2.1.1 传输线方程(Telegrapher’s Equation)推导
考虑一段无限小长度 $ \Delta z $ 的均匀传输线,其单位长度具有分布电阻 $ R $(Ω/m)、电感 $ L $(H/m)、电导 $ G $(S/m)以及电容 $ C $(F/m)。这些分布参数来源于导体的有限电导率、介质的极化响应以及几何结构所决定的电磁耦合。
设该段上的电压为 $ V(z,t) $,电流为 $ I(z,t) $,根据基尔霍夫电压定律(KVL)和电流定律(KCL),可得:
\frac{\partial V}{\partial z} = -R I - L \frac{\partial I}{\partial t}
\frac{\partial I}{\partial z} = -G V - C \frac{\partial V}{\partial t}
若假设信号为单一频率的正弦稳态激励(即 $ e^{j\omega t} $ 形式),则上式可在频域简化为复数形式:
\frac{dV(z)}{dz} = -(R + j\omega L)I(z)
\frac{dI(z)}{dz} = -(G + j\omega C)V(z)
对上述两式分别求导并代入消元,即可得到关于电压或电流的二阶偏微分方程:
\frac{d^2V(z)}{dz^2} - \gamma^2 V(z) = 0
其中,
\gamma = \sqrt{(R + j\omega L)(G + j\omega C)}
称为 传播常数 ,其物理意义将在下一小节详细解释。
此方程即为著名的 传输线方程 (也称电报方程),它适用于所有支持纵向传播的TEM或准TEM模传输结构,如同轴线和微带线。对于不支持纯TEM模的波导,则需直接求解麦克斯韦方程组。
flowchart TD
A[输入分布参数 R, L, G, C] --> B[应用KVL/KCL]
B --> C[建立时域电报方程]
C --> D[转换到频域复数表示]
D --> E[推导电压/电流波动方程]
E --> F[定义传播常数 γ 和特性阻抗 Z₀]
F --> G[求解通解: 前向+反向行波]
逻辑说明 :该流程图展示了从物理建模到数学建模的完整路径。初始输入的是由材料和几何决定的分布参数;通过电路定律建立动态关系;最终导出描述波传播行为的波动方程。这是理解任何传输线的基础。
参数说明:
- $ R $:导体欧姆损耗导致的能量耗散。
- $ L $:磁能存储能力,与磁场环绕导体的程度有关。
- $ G $:介质漏电流引起的能量损失。
- $ C $:电场储能能力,取决于介质介电常数和极板间距。
- $ \omega = 2\pi f $:角频率,决定电抗项权重。
该模型虽源自低频电路思想,但在合理假设下可扩展至GHz级高频应用,前提是忽略高阶模和辐射效应。
2.1.2 特性阻抗与传播常数的物理意义
特性阻抗 $ Z_0 $ 和传播常数 $ \gamma $ 是表征传输线本质属性的两个核心参数。
特性阻抗 $ Z_0 $
定义为沿线任意点处前向行波电压与电流之比:
Z_0 = \frac{V^+}{I^+} = \sqrt{\frac{R + j\omega L}{G + j\omega C}}
在理想无损情况下($ R=0, G=0 $),上式退化为:
Z_0 = \sqrt{\frac{L}{C}}
这表明 $ Z_0 $ 完全由传输线的几何结构和填充介质决定,与频率无关。例如,在空气同轴线中,若内导体半径为 $ a $,外导体内半径为 $ b $,则:
L = \frac{\mu_0}{2\pi} \ln\left(\frac{b}{a}\right),\quad C = \frac{2\pi\epsilon_0}{\ln(b/a)}
\Rightarrow Z_0 = \frac{1}{2\pi} \sqrt{\frac{\mu_0}{\epsilon_0}} \ln\left(\frac{b}{a}\right) \approx 60 \ln\left(\frac{b}{a}\right)\ \Omega
| 传输线类型 | 典型 $ Z_0 $ 值 | 应用场景 |
|---|---|---|
| 同轴线(RG-58) | 50 Ω | 射频测试、基站馈线 |
| 微带线(FR4) | 50 Ω | PCB射频走线 |
| 波导(WR-90) | ~500 Ω(等效) | 高功率雷达系统 |
| 双绞线(CAT5e) | 100 Ω | 千兆以太网 |
注意:波导本身不支持TEM模,故无严格意义上的“特性阻抗”,但可通过功率-电流比等方式定义等效 $ Z_0 $。
传播常数 $ \gamma $
如前所述:
\gamma = \alpha + j\beta = \sqrt{(R + j\omega L)(G + j\omega C)}
其中:
- $ \alpha $:衰减常数(Np/m),代表单位长度信号幅度下降;
- $ \beta $:相位常数(rad/m),决定波长 $ \lambda_g = 2\pi / \beta $ 和相速度 $ v_p = \omega / \beta $。
在低损耗近似下($ R \ll \omega L,\ G \ll \omega C $),可展开为:
\alpha \approx \frac{1}{2} \left( R \sqrt{\frac{C}{L}} + G \frac{L}{\sqrt{LC}} \right) = \frac{1}{2} \left( R Y_0 + G / Y_0 \right)
其中 $ Y_0 = 1/Z_0 $。
这揭示了两种主要损耗来源:
- 导体损耗正比于 $ R $ 和 $ Y_0 $
- 介质损耗正比于 $ G $ 和 $ 1/Y_0 $
因此,在设计时可通过降低 $ R $(使用镀银导体)、选择低 $ \tan \delta $ 介质(减小 $ G $)来优化插入损耗。
2.1.3 行波、驻波与行驻波比的基本关系
当传输线终端负载阻抗 $ Z_L $ 不等于特性阻抗 $ Z_0 $ 时,会发生反射,形成驻波。
定义电压反射系数:
\Gamma_L = \frac{Z_L - Z_0}{Z_L + Z_0}
沿线总电压为前向波与反射波叠加:
V(z) = V^+ e^{-\gamma z} + V^- e^{\gamma z} = V^+ \left( e^{-\gamma z} + \Gamma_L e^{\gamma z} \right)
当无反射($ \Gamma_L = 0 $)时,只有行波存在,能量完全传输。当全反射($ |\Gamma_L|=1 $)时,出现纯驻波,某些位置电压极大,某些为零。
引入 电压驻波比 (VSWR)衡量匹配质量:
\text{VSWR} = \frac{1 + |\Gamma_L|}{1 - |\Gamma_L|}
常见取值如下表所示:
| $ |\Gamma_L| $ | VSWR | 匹配状态 |
|------------------|--------|-----------|
| 0.0 | 1.0 | 完美匹配 |
| 0.1 | 1.22 | 良好 |
| 0.3 | 1.86 | 可接受 |
| 0.5 | 3.0 | 较差 |
| 1.0 | ∞ | 开路/短路|
在工程实践中,通常要求 VSWR < 1.5(对应回波损耗 > 14 dB)以确保系统稳定性。
此外, 回波损耗 (Return Loss)定义为:
RL = -20 \log_{10} |\Gamma_L|\ \text{dB}
它可以直接由网络分析仪测量获得,是评估天线、滤波器等器件端口匹配的重要指标。
2.2 各类传输线结构及其电磁场分布
不同微波传输线因其物理结构和边界条件各异,支持的传播模式各不相同。本节重点分析 矩形波导 、 同轴线 和 微带线 三类主流结构的场分布特性、模态限制及其适用频段。
2.2.1 波导(矩形与圆波导)的截止频率与TE/TM模态
波导是一种封闭金属管结构,仅允许高于某一 截止频率 的电磁波传播。最常用的是 矩形波导 (如WR-90用于X波段雷达)。
考虑横截面为 $ a \times b $ 的理想导体矩形波导,内部填充介质 $ \epsilon, \mu $。根据麦克斯韦方程和边界条件(切向电场为零),可分离变量求解波动方程。
得到横向电场和磁场的解分为两类:
- TE mn 模 :$ E_z = 0, H_z \neq 0 $
- TM mn 模 :$ H_z = 0, E_z \neq 0 $
其中 $ m,n $ 为整数,表示沿 $ x,y $ 方向的驻波数量。
对应的 截止波数 为:
k_c = \sqrt{ \left( \frac{m\pi}{a} \right)^2 + \left( \frac{n\pi}{b} \right)^2 }
\Rightarrow f_c = \frac{c}{2\pi\sqrt{\mu_r \epsilon_r}} k_c
最低阶非零模为 TE 10 ,其截止频率最低,为主模。
例如 WR-90 波导($ a=22.86\ \text{mm}, b=10.16\ \text{mm} $),空气填充:
f_{c,10} = \frac{3 \times 10^8}{2 \times 0.02286} = 6.56\ \text{GHz}
因此工作频段定为 8.2–12.4 GHz(推荐 $ f > 1.25 f_c $)。
| 模式 | 截止频率公式 | 场分布特点 |
|---|---|---|
| TE 10 | $ f_c = \frac{c}{2a} $ | $ E_y $ 主导,中心最强 |
| TE 20 | $ f_c = \frac{c}{a} $ | 两个电场峰,易激发 |
| TM 11 | $ f_c = \frac{c}{2}\sqrt{(1/a)^2+(1/b)^2} $ | 有纵向电场,难激励 |
import numpy as np
import matplotlib.pyplot as plt
# 计算TE10模电场 Ey(x)
a = 0.02286 # m
x = np.linspace(0, a, 100)
Ey = np.sin(np.pi * x / a)
plt.plot(x*1000, Ey)
plt.xlabel('x (mm)')
plt.ylabel('$E_y$ (arb.)')
plt.title('Electric Field Distribution of TE₁₀ Mode in Rectangular Waveguide')
plt.grid(True)
plt.show()
代码逻辑分析 :
- 使用numpy构造空间坐标x。
- 根据 TE 10 解析解 $ E_y \propto \sin(\pi x / a) $ 计算场强。
- 绘图显示电场在波导宽边中心最大,两侧为零,符合边界条件。
波导优点包括高功率容量、低损耗(尤其铜镀银)、屏蔽良好;缺点是体积大、难以集成、无法传输DC信号。
2.2.2 同轴线的TEM模传输特性与高次模抑制
同轴线由内外两个同心导体构成,中间填充介质。其最大优势在于支持 纯TEM模 (Transverse Electro-Magnetic Mode),即 $ E_z = 0, H_z = 0 $,电场和磁场均横向存在。
在TEM模下,传播常数为:
\beta = \omega \sqrt{\mu \epsilon},\quad v_p = \frac{1}{\sqrt{\mu \epsilon}},\quad Z_0 = \frac{1}{2\pi} \sqrt{\frac{\mu}{\epsilon}} \ln\left(\frac{b}{a}\right)
这意味着相速与频率无关, 无色散 ,非常适合宽带传输。
然而,当频率升高时,可能出现高阶模(如TE 11 ),其截止波长约为 $ \pi(a+b)/2 $。为保证单模工作,应满足:
f < f_{\text{cutoff}} \approx \frac{c}{\pi(a+b)\sqrt{\epsilon_r}}
例如 RG-58($ a=0.4\ \text{mm}, b=1.5\ \text{mm}, \epsilon_r=2.3 $),计算得 $ f_c \approx 26\ \text{GHz} $,故可用于S/C/X波段。
| 类型 | 外径 (mm) | $ Z_0 $ | 最高可用频率 | 材料 |
|---|---|---|---|---|
| RG-58 | 5.0 | 50 Ω | ~20 GHz | PVC护套 |
| LMR-400 | 10.3 | 50 Ω | ~18 GHz | 聚乙烯泡沫 |
| 1/2” Heliax | 13.0 | 50 Ω | ~40 GHz | 发泡PE, 铜包铝 |
为抑制高次模,常采用螺旋槽内导体或周期性加载结构(如半刚性同轴线)。
2.2.3 微带线的准TEM模近似与色散效应分析
微带线是最常见的平面传输线,广泛应用于PCB射频模块中。结构为顶层信号线 + 中间介质层 + 底层接地平面。
由于上下介质不同(空气与FR4),无法支持纯TEM模,但可采用 准TEM模近似 处理:假设瞬时电场分布与静态情况相似。
特性阻抗经验公式(Wheeler公式):
Z_0 \approx \frac{87}{\sqrt{\epsilon_r + 1.41}} \ln\left( \frac{5.98h}{0.8w + t} \right)\ \Omega \quad (\text{当 } w/h < 2)
其中:
- $ w $:线宽
- $ h $:介质厚度
- $ t $:导体厚度
- $ \epsilon_r $:基板相对介电常数
有效介电常数估算:
\epsilon_{\text{eff}} \approx \frac{\epsilon_r + 1}{2} + \frac{\epsilon_r - 1}{2} \cdot \frac{1}{\sqrt{1 + 12h/w}}
随频率升高,边缘场更多进入空气,导致 $ \epsilon_{\text{eff}} $ 下降,引起 色散 (相速变化),影响群延迟一致性。
% MATLAB代码:绘制微带线色散曲线
w = 2e-3; h = 1.6e-3; er = 4.4;
f = logspace(1, 12, 100); % 10MHz to 1THz
eps_eff = zeros(size(f));
for i = 1:length(f)
eps_eff(i) = (er + 1)/2 + (er - 1)/(2*sqrt(1 + 12*h/w)) * ...
(1 + 10*f(i)/(1e9))^( -0.1 ); % 简化色散模型
end
semilogx(f./1e9, sqrt(eps_eff));
xlabel('Frequency (GHz)');
ylabel('\sqrt{\epsilon_{eff}}');
title('Dispersion Behavior of Microstrip Line');
grid on;
逻辑说明 :
- 利用经验公式估算不同频率下的 $ \epsilon_{\text{eff}} $。
- 随着频率上升,有效介电常数降低,意味着相速度增加。
- 这种非线性相位响应会对宽带调制信号造成失真,需在高速设计中加以补偿。
微带线优势在于易于集成、成本低;缺点是辐射损耗较大、功率容量有限、对工艺公差敏感。
2.3 传输线损耗机制与实用设计考量
2.3.1 导体损耗、介质损耗与辐射损耗的量化计算
真实传输线存在三大损耗机制:
(1)导体损耗
源于趋肤效应。高频下电流集中在导体表面,有效截面积减小。
趋肤深度:
\delta = \sqrt{ \frac{2}{\omega \mu \sigma} }
铜在10 GHz时 $ \delta \approx 0.66\ \mu m $,若导体厚度小于此值,损耗急剧上升。
单位长度电阻:
R_s = \frac{1}{\sigma \delta},\quad R = R_s \cdot \frac{P}{A_{\text{eff}}} \approx R_s \cdot \frac{\text{周长}}{2\delta}
(2)介质损耗
由介质极化滞后引起,用损耗角正切 $ \tan \delta $ 表示。
单位长度电导:
G = \omega C \tan \delta
对应的衰减:
\alpha_d = \frac{G Z_0}{2} = \frac{\omega \epsilon’’ Z_0}{2},\quad \text{其中 } \epsilon’’ = \epsilon’ \tan \delta
(3)辐射损耗
主要存在于非封闭结构如微带线。可通过增大接地平面、缩短悬空段、使用共面波导改进。
总衰减(dB/m):
\alpha_{\text{total}} = \alpha_c + \alpha_d + \alpha_r \approx \frac{8.686}{2} \left( \frac{R}{Z_0} + \omega C \tan \delta \cdot Z_0 \right)
2.3.2 馈线选择原则:功率容量、插入损耗与机械稳定性
| 指标 | 波导 | 同轴线 | 微带线 |
|---|---|---|---|
| 功率容量 | 极高(MW级) | 高(kW级) | 低(W级) |
| 插入损耗 | 极低(0.01 dB/m) | 中等(0.1–1 dB/m) | 较高(1–5 dB/m) |
| 屏蔽性 | 完全封闭 | 良好 | 差(需屏蔽罩) |
| 集成度 | 差 | 中等 | 高 |
| 成本 | 高 | 中等 | 低 |
选择建议:
- 雷达发射系统 → 波导
- 测试仪器连接 → 半刚性同轴线
- 手机射频前端 → 微带线或CPW
2.3.3 高频PCB布局中微带线阻抗控制实践
关键步骤:
1. 选用高频板材(Rogers RO4350B, $ \epsilon_r=3.48 $)
2. 精确控制介质厚度(±10%以内)
3. 使用阻抗计算器(如Polar SI9000)设定线宽
4. 添加背钻去除过孔残桩
5. 保持参考平面完整,避免割裂
实例:设计50 Ω微带线,$ h=0.508\ \text{mm}, \epsilon_r=3.66 $,查表得 $ w \approx 0.65\ \text{mm} $
2.4 仿真工具辅助分析实例
2.4.1 使用HFSS或ADS建立微带线模型
在Ansys HFSS中创建参数化模型:
- 设置基板材料(Rogers 4003C)
- 绘制铜迹线(宽0.5 mm,厚17 μm)
- 添加端口激励(Lumped Port)
- 网格划分(Lambda Refinement)
- 求解频段:1–20 GHz
输出:S11, S21, 场分布动画
2.4.2 S参数提取与回波损耗验证
仿真结果示例:
- $ |S_{11}| < -15\ \text{dB} $ over 2–6 GHz → 良好匹配
- $ |S_{21}| > -0.5\ \text{dB} $ → 低插入损耗
可通过TDR(时域反射计)实测验证模型准确性。
graph LR
A[CAD几何建模] --> B[材料赋值]
B --> C[边界条件设置]
C --> D[自适应网格生成]
D --> E[频域求解]
E --> F[S参数输出]
F --> G[与实测对比]
此流程确保设计闭环验证,提升一次成功率。
3. 微波网络基本定理与史密斯圆图应用
在现代射频与微波工程中,系统通常由多个子模块级联构成,如放大器、滤波器、混频器和天线等。这些模块之间的接口特性直接影响整体性能,尤其是在高频条件下,分布参数效应显著增强,传统的集总电路理论难以适用。因此,必须引入基于散射参数的网络分析方法,并借助图形化工具进行直观设计与调试。本章深入探讨微波网络的矩阵描述体系,重点解析S参数的物理意义及其测量方式,建立多端口系统的统一建模框架。进一步,全面讲解史密斯圆图这一经典阻抗可视化工具的数学基础与实际操作技巧,揭示其在阻抗匹配设计中的核心地位。通过理论推导与工程实践相结合的方式,展示如何利用史密斯圆图完成从实测数据到匹配网络综合的完整流程,为后续高频电路优化提供坚实支撑。
3.1 线性微波网络的矩阵描述方法
在微波频段,电压和电流不再是局域可定义的量,传统基于基尔霍夫定律的Z参数或Y参数分析面临局限。取而代之的是以入射波与反射波为核心的散射参数(S参数)体系,它不仅便于测量,而且能直接反映能量传输行为。然而,为了理解不同参数体系之间的内在联系,仍需系统掌握阻抗矩阵(Z)、导纳矩阵(Y)、传输矩阵(ABCD)以及散射矩阵(S)各自的适用场景与转换关系。
3.1.1 阻抗矩阵(Z参数)与导纳矩阵(Y参数)转换
对于一个N端口线性网络,在频率域下可以表示为端口电压与电流之间的线性关系:
\begin{bmatrix}
V_1 \
V_2 \
\vdots \
V_N
\end{bmatrix}
=
\begin{bmatrix}
Z_{11} & Z_{12} & \cdots & Z_{1N} \
Z_{21} & Z_{22} & \cdots & Z_{2N} \
\vdots & \vdots & \ddots & \vdots \
Z_{N1} & Z_{N2} & \cdots & Z_{NN}
\end{bmatrix}
\begin{bmatrix}
I_1 \
I_2 \
\vdots \
I_N
\end{bmatrix}
其中 $ V_n $ 和 $ I_n $ 分别为第n个端口的电压和电流,$ Z_{mn} = \frac{V_m}{I_n}\big|_{I_k=0, k \neq n} $ 表示当其余所有端口开路时,m端口对n端口的转移阻抗。该定义适用于低频集中参数网络,但在高频下由于无法实现理想开路条件,Z参数难以准确测量。
相应地,导纳矩阵 Y 定义为:
\mathbf{I} = \mathbf{Y} \mathbf{V}
\quad \Rightarrow \quad
Y_{mn} = \frac{I_m}{V_n}\bigg|_{V_k=0, k \neq n}
即所有其他端口短路时的转移导纳。Z与Y互为逆矩阵:
\mathbf{Y} = \mathbf{Z}^{-1}, \quad \mathbf{Z} = \mathbf{Y}^{-1}
这种转换在某些对称结构(如π型或T型等效电路)中非常有用。例如,在设计平衡式功放输入匹配时,常先通过电磁仿真获得Z参数,再转化为Y参数以便于并联元件的设计。
参数局限性与高频适应性对比
| 参数类型 | 测量条件 | 高频可行性 | 典型应用场景 |
|---|---|---|---|
| Z参数 | 所有端口开路 | 差(寄生电容影响大) | 低频IC建模 |
| Y参数 | 所有端口短路 | 差(引线电感不可忽略) | 晶体管小信号模型 |
| S参数 | 所有端口匹配负载 | 好(可用定向耦合器测量) | 射频器件表征 |
说明 :上表显示了三种主要参数在高频环境下的实用性差异。S参数因其基于匹配终端的测量方式,避免了极端边界条件带来的误差,成为主流选择。
尽管如此,Z/Y参数并未完全淘汰。在非互易器件(如隔离器、环形器)或需要提取等效电路模型时,仍可通过S→Z变换重建阻抗行为。
3.1.2 散射矩阵(S参数)的物理含义及其测量方式
散射矩阵是描述微波网络最通用的工具之一,尤其适用于高频、分布参数系统。其核心思想是将每个端口的总电压分解为前向行波 $ a_n $ 和反向行波 $ b_n $:
a_n = \frac{V_n^+}{\sqrt{Z_0}}, \quad
b_n = \frac{V_n^-}{\sqrt{Z_0}}
其中 $ V_n^+ $ 为入射波,$ V_n^- $ 为反射波,$ Z_0 $ 为参考特性阻抗(通常50Ω)。则S参数定义为:
b_m = \sum_{n=1}^{N} S_{mn} a_n
\quad \Rightarrow \quad
\mathbf{b} = \mathbf{S} \mathbf{a}
具体地:
- $ S_{11} = \frac{b_1}{a_1}\big| {a_2=a_3=\dots=0} $:端口1的回波损耗(Return Loss)
- $ S {21} = \frac{b_2}{a_1}\big| {a_2=a_3=\dots=0} $:正向增益/插入损耗
- $ S {12} $:反向隔离度
- $ S_{22} $:输出端口匹配
# Python 示例:从VNA读取S参数并计算回波损耗
import numpy as np
def s11_to_return_loss(s11_linear):
"""
输入:S11复数形式(线性幅度)
输出:回波损耗(dB)
"""
mag_squared = np.abs(s11_linear)**2
if mag_squared == 0:
return float('inf')
return -10 * np.log10(mag_squared)
# 示例数据:S11 = 0.2∠30°
s11_complex = 0.2 * (np.cos(np.pi/6) + 1j*np.sin(np.pi/6))
rl_db = s11_to_return_loss(s11_complex)
print(f"S11: {s11_complex:.3f}, Return Loss: {rl_db:.2f} dB")
代码逻辑逐行解读 :
1.np.abs(s11_linear)**2计算反射功率比例;
2. 使用公式 $ RL = -10\log_{10}(|Γ|^2) $ 转换为dB;
3. 复数角度不影响幅值,仅相位用于匹配设计;
4. 结果表明即使S11较小(0.2),也能实现约14dB的良好匹配。
现代矢量网络分析仪(VNA)通过定向耦合器分离入射与反射波,直接测量S参数。其校准过程(如SOLT:Short-Open-Load-Thru)消除系统误差,确保精度可达±0.01dB。
3.1.3 多端口网络级联的ABCD参数法
当多个二端口网络串联连接时(如滤波器+放大器+匹配网络),使用S参数直接级联极为复杂,需转换至ABCD参数(又称传输矩阵)进行乘法运算。
对于单个二端口网络:
\begin{bmatrix}
V_1 \
I_1
\end{bmatrix}
=
\begin{bmatrix}
A & B \
C & D
\end{bmatrix}
\begin{bmatrix}
V_2 \
-I_2
\end{bmatrix}
ABCD参数的具体表达依赖于元件类型:
| 元件类型 | ABCD矩阵 |
|---|---|
| 串联阻抗Z | $\begin{bmatrix}1 & Z \ 0 & 1\end{bmatrix}$ |
| 并联导纳Y | $\begin{bmatrix}1 & 0 \ Y & 1\end{bmatrix}$ |
| 四分之一波长线 | $\begin{bmatrix}0 & jZ_0 \ j/Z_0 & 0\end{bmatrix}$ |
| 理想变压器(变比n:1) | $\begin{bmatrix}n & 0 \ 0 & 1/n\end{bmatrix}$ |
级联时只需矩阵相乘:
\mathbf{T}_{total} = \mathbf{T}_1 \cdot \mathbf{T}_2 \cdot \dots \cdot \mathbf{T}_n
之后可转换回Z、Y或S参数供仿真使用。
% MATLAB 示例:两级LC低通滤波器级联
C = 1e-12; L = 1e-9; f = 2.4e9;
w = 2*pi*f; Z0 = 50;
% 第一级:π型结构(C-L-C)
Y_C = 1i*w*C;
ABCD_C = [1, 0; Y_C, 1];
ABCD_L = [1, 1i*w*L; 0, 1];
T_stage = ABCD_C * ABCD_L * ABCD_C;
% 两级级联
T_total = T_stage * T_stage;
% 转换为S参数
A = T_total(1,1); B = T_total(1,2);
C = T_total(2,1); D = T_total(2,2);
delta_T = A*D - B*C;
S11 = (A + B/Z0 - C*Z0 - D) / (A + B/Z0 + C*Z0 + D);
S21 = 2*(delta_T) / (A + B/Z0 + C*Z0 + D);
fprintf('S11=%.3f∠%.1f°, S21=%.3f∠%.1f°\n', ...
abs(S11), angle(S11)*180/pi, abs(S21), angle(S21)*180/pi);
参数说明与扩展分析 :
- 此脚本模拟了一个简单的两节LC滤波器级联响应;
- ABCD矩阵允许精确追踪电压电流传播路径;
- 最终S21可用于判断通带平坦度与截止频率;
- 若加入寄生电阻R_series,则B项变为 $ iωL + R $,体现损耗影响。
该方法广泛应用于滤波器综合、阻抗变换器设计及宽带放大器稳定性分析中。
3.2 史密斯圆图的构建原理与坐标映射
史密斯圆图(Smith Chart)是由P.H. Smith于1939年提出的一种共形映射工具,将复数反射系数平面 $ \Gamma = \frac{Z_L - Z_0}{Z_L + Z_0} $ 映射到单位圆内,从而将复杂的阻抗变换问题几何化。至今仍是射频工程师不可或缺的手工设计辅助工具。
3.2.1 归一化阻抗平面到反射系数平面的共形变换
设负载阻抗为 $ Z_L = R + jX $,归一化后得 $ z_L = \frac{Z_L}{Z_0} = r + jx $。反射系数定义为:
\Gamma = \frac{z_L - 1}{z_L + 1}
\quad \Rightarrow \quad
\Gamma_r + j\Gamma_i = \frac{(r-1)+jx}{(r+1)+jx}
此映射将右半复平面(Re{z_L} > 0)压缩至单位圆内部,形成史密斯圆图的基本域。关键性质包括:
- 实轴映射为横轴(电抗x=0)
- 无穷远点 → (1,0),短路点 → (-1,0),开路 → (1,0)极限
- 圆对圆保持:恒r圆与恒x圆均映射为圆弧
使用Python绘制基本变换轨迹:
import matplotlib.pyplot as plt
import numpy as np
def smith_transform(r, x):
"""输入归一化阻抗 r+jx,输出 Γ_real, Γ_imag"""
z = r + 1j*x
gamma = (z - 1) / (z + 1)
return np.real(gamma), np.imag(gamma)
# 绘制恒电阻圆(r=0.5,1,2)
fig, ax = plt.subplots(figsize=(8,8))
for r in [0.2, 0.5, 1.0, 2.0, 5.0]:
x = np.linspace(-5, 5, 400)
gr, gi = smith_transform(r*np.ones_like(x), x)
ax.plot(gr, gi, label=f'r={r}')
# 绘制恒电抗圆(x=±0.5,±1,±2)
for x_val in [0.5, 1.0, 2.0]:
r = np.linspace(0, 10, 200)
gr1, gi1 = smith_transform(r, x_val*np.ones_like(r))
gr2, gi2 = smith_transform(r, -x_val*np.ones_like(r))
ax.plot(gr1, gi1, 'k--', alpha=0.6)
ax.plot(gr2, gi2, 'k--', alpha=0.6)
ax.set_xlim(-1, 1); ax.set_ylim(-1, 1)
ax.add_patch(plt.Circle((0,0), 1, fill=False, color='blue'))
ax.grid(True); ax.set_aspect('equal'); ax.legend()
ax.set_title("Smith Chart: Constant Resistance & Reactance Circles")
plt.show()
逻辑分析 :
- 每条曲线代表固定r或x下的Γ轨迹;
- 所有恒r圆穿过(1,0),中心位于实轴;
- 恒x圆为正交族,仅部分在单位圆内可见;
- 图形验证了共形映射的保角性。
3.2.2 恒电阻圆与恒电抗圆的几何特征解析
史密斯圆图上的每一点对应唯一的归一化阻抗。理解其拓扑结构有助于快速定位匹配路径。
恒电阻圆方程推导:
由 $ \Gamma = \frac{r-1+jx}{r+1+jx} $,令 $ \Gamma = u + jv $,整理可得:
\left(u - \frac{r}{r+1}\right)^2 + v^2 = \left(\frac{1}{r+1}\right)^2
这表明恒r圆是以 $ \left(\frac{r}{r+1}, 0\right) $ 为中心、半径 $ \frac{1}{r+1} $ 的圆。
恒电抗圆方程:
类似地,
(u - 1)^2 + \left(v - \frac{1}{x}\right)^2 = \left(\frac{1}{x}\right)^2
即圆心在 $ (1, 1/x) $,半径也为 $ 1/|x| $。
| r值 | 圆心位置 | 半径 | 特点 |
|---|---|---|---|
| 0 | (0,0) | 1 | 左半圆(纯虚轴) |
| 1 | (0.5,0) | 0.5 | 经过原点,标准匹配点 |
| ∞ | (1,0) | 0 | 开路极限点 |
graph TD
A[归一化阻抗 z=r+jx] --> B{映射函数}
B --> C[Γ = (z-1)/(z+1)]
C --> D[单位圆内点]
D --> E[恒r圆: (u-r/(r+1))² + v² = (1/(r+1))²]
D --> F[恒x圆: (u-1)² + (v-1/x)² = (1/x)²]
E --> G[阻抗读取]
F --> G
流程图说明 :展示了从原始阻抗到史密斯圆图坐标的完整映射路径,强调了几何构造的数学依据。
3.2.3 圆图上驻波比圆、导纳轨迹的读取技巧
除了阻抗外,史密斯圆图还可叠加导纳(Y=1/Z)网格,便于并联元件设计。归一化导纳 $ y = g + jb $ 同样满足:
\Gamma = \frac{1 - y}{1 + y}
因此导纳图相当于阻抗图旋转180°。
驻波比(VSWR)与反射系数关系为:
\text{VSWR} = \frac{1 + |\Gamma|}{1 - |\Gamma|}
在圆图上表现为同心圆,中心为原点,半径越大VSWR越高。
实用技巧总结:
-
移动方向判别 :
- 沿传输线向源方向移动 → 顺时针绕圆心旋转
- 波长刻度标注在外圈(λ toward generator) -
并联元件操作 :
- 加电容 → 沿恒g圆向下(负b方向)
- 加电感 → 向上(正b方向) -
串联元件操作 :
- 加电容 → 沿恒r圆向下(负x方向)
- 加电感 → 向上(正x方向)
这些规则极大简化了手工匹配设计过程,尤其在现场调试中具有不可替代的价值。
3.3 阻抗匹配技术的实际应用
阻抗匹配是微波系统设计的核心任务之一,目标是使源与负载之间最大功率传输,同时最小化反射。常用方法包括支节匹配、λ/4变换器和L型网络。
3.3.1 单支节与双支节匹配器的设计流程
单支节匹配器使用一段主传输线加一个并联开路或短路支节,可在特定频率实现完美匹配。
设计步骤如下:
- 已知负载阻抗 $ Z_L $,归一化得 $ z_L $
- 在史密斯圆图上标出 $ z_L $
- 沿恒|Γ|圆顺时针旋转至与g=1圆相交 → 得位置d
- 在该点并联jB使总导纳为1+j0 → 支节值 $ y_s = -jb $
- 查找对应开路/短路长度l
# 单支节匹配计算示例
def stub_match(z_load, Z0=50):
from cmath import sqrt
z_norm = z_load / Z0
gamma = (z_norm - 1) / (z_norm + 1)
theta = np.angle(gamma)
mag = abs(gamma)
# 解方程求d和l(简化版数值解)
# 实际应结合圆图迭代或查表
print("建议使用史密斯圆图工具手动确定d和l")
return None
# 示例:ZL = 100 + j80 Ω
stub_match(100 + 1j*80)
说明 :此类问题更适合图形化求解。双支节匹配虽灵活性稍差,但避免了可调位置限制,适合集成化设计。
3.3.2 四分之一波长变换器的局限性与改进方案
λ/4变换器适用于实数负载匹配:
Z_T = \sqrt{Z_0 Z_L}
但对复数负载无效。改进方案包括:
- 宽带多节阶梯变换器 :使用切比雪夫多项式优化反射响应
- 渐变线 :指数或锥形线实现连续过渡
3.3.3 利用史密斯圆图进行L型匹配网络综合
L型网络由两个电抗元件组成(串+并或并+串),适用于 $ r \geq 1 $ 或 $ g \geq 1 $ 的情况。
设计原则:
- 若 $ r < 1 $,先串联电感抬高r,再并联电容调g
- 反之亦然
最终可在圆图上找到两条路径交汇于中心点(匹配点)。
3.4 工程案例:功放输出级匹配网络调谐
3.4.1 基于VNA实测数据的负载牵引分析
使用VNA测量FET器件在不同负载阻抗下的S22,结合负载牵引技术寻找最优Γ opt ,然后通过匹配网络将其变换至50Ω。
3.4.2 匹配电路在高频下的寄生效应补偿
PCB走线电感、焊盘电容(~0.1pF)、元件Q值下降等问题需预先建模。建议采用EM仿真联合优化。
flowchart LR
A[VNA测量S参数] --> B[S→Z转换]
B --> C[提取Γ_opt]
C --> D[史密斯圆图匹配设计]
D --> E[加入寄生模型]
E --> F[ADS/HFSS仿真验证]
F --> G[实物测试调整]
流程图说明 :完整展示了从测量到调试的闭环设计流程,突出史密斯圆图在其中的关键桥梁作用。
综上所述,掌握微波网络参数体系与史密斯圆图应用,不仅是理论要求,更是解决实际工程问题的核心能力。
4. 天线基本参数与典型结构辐射特性分析
在现代无线通信系统中,天线作为电磁能量发射与接收的终端装置,承担着将导行波转换为自由空间波的关键角色。其性能优劣直接决定了链路质量、覆盖范围和频谱效率。随着5G毫米波、卫星互联网(如Starlink)、雷达探测及物联网技术的发展,对高增益、宽频带、多极化、小型化天线的需求日益增长。因此,深入理解天线的基本参数体系及其典型结构的辐射机制,是射频工程师进行系统设计与优化的核心能力之一。
本章从天线基础性能指标出发,建立可量化评估模型,并结合经典天线类型展开建模分析,进而探讨极化方式对通信链路的影响,最后通过全向与定向天线的应用对比,揭示不同场景下的工程选型逻辑。整个过程融合理论推导、图形化工具解读与实际应用案例,形成从“参数定义”到“结构实现”再到“系统部署”的完整认知链条。
4.1 天线核心性能指标的定义与测量
天线并非简单的金属导体组合,而是一个复杂的电磁场分布系统。其行为受到电流激励方式、几何形状、材料属性以及周围环境的共同影响。为了科学地描述和比较不同天线的表现,必须引入一组标准化的核心性能指标。这些参数不仅用于实验室测试,也广泛应用于产品规格书、系统预算计算和网络规划软件之中。
4.1.1 辐射方向图、主瓣宽度与旁瓣电平
辐射方向图(Radiation Pattern)是表征天线在空间各方向上辐射强度分布的图形表示,通常以球坐标系下的归一化功率或场强绘制。它可以分为三维方向图和二维切面图(如E面和H面)。方向图直观展示了天线的能量集中程度与指向性特征。
主瓣(Main Lobe)是指辐射最强的方向区域,其角宽度称为 主瓣宽度 (通常定义为-3 dB点之间的夹角),反映了天线的空间分辨率能力。例如,在雷达系统中,窄主瓣意味着更高的角度分辨力;而在蜂窝基站中,则需根据扇区覆盖需求选择合适的水平面主瓣宽度(如65°、90°或120°)。
旁瓣(Side Lobes)则是除主瓣外的其他辐射峰,理想情况下应尽可能抑制。过高的旁瓣会导致干扰泄露、降低信号保密性,并可能引发多径效应。工程上常用 旁瓣电平 (SLL, Side Lobe Level)来衡量其最大值相对于主瓣峰值的衰减量,单位为dB。高性能天线通常要求SLL低于-15 dB甚至-20 dB。
以下为常见天线类型的典型方向图参数对比:
| 天线类型 | 主瓣宽度(水平) | 旁瓣电平(dB) | 应用场景 |
|---|---|---|---|
| 单极子天线 | 全向(~360°) | -8 ~ -10 | FM广播、低功耗IoT |
| 对称偶极子 | ~78° | ~-13 | 教学演示、参考天线 |
| 抛物面反射器 | 2°~10°可调 | <-20 | 卫星通信、深空探测 |
| 微带贴片阵列 | 30°~60° | -15 ~ -18 | 5G毫米波、车载雷达 |
graph TD
A[激励源输入] --> B[电流分布在天线上形成]
B --> C[时变电磁场向外传播]
C --> D[远场区形成稳定方向图]
D --> E{是否满足设计目标?}
E -->|否| F[调整结构/匹配网络]
E -->|是| G[完成方向图优化]
该流程图展示了方向图形成的物理过程与优化闭环路径。值得注意的是,方向图的测量需在 远场条件 下进行,即满足:
R > \frac{2D^2}{\lambda}
其中 $ R $ 为测量距离,$ D $ 为天线最大孔径尺寸,$ \lambda $ 为工作波长。若不满足此条件,近场衍射效应将导致方向图失真。
4.1.2 方向性系数D与增益G的区别与联系
方向性系数 $ D $ 和增益 $ G $ 是两个极易混淆但本质不同的概念。它们都用来描述天线在某一方向上的辐射集中能力,但增益考虑了效率因素。
- 方向性系数 $ D $ 定义为:在给定方向上的辐射强度与相同输入功率下理想全向天线平均辐射强度之比。数学表达式为:
D = \frac{U_{max}}{P_{rad}/(4\pi)}
其中 $ U_{max} $ 为最大辐射强度,$ P_{rad} $ 为总辐射功率。$ D $ 仅反映方向集中性,不涉及损耗。
- 增益 $ G $ 则进一步计入天线效率 $ \eta $,即:
G = \eta \cdot D
效率 $ \eta $ 包括导体损耗、介质损耗和阻抗失配引起的反射损耗(VSWR相关)。因此,即使某天线具有很高的方向性,若存在严重损耗,其实测增益仍会显著下降。
例如,一个微带贴片天线在仿真中显示方向性为8 dBi,但由于基板介质损耗和馈电不匹配,实测增益仅为6.5 dBi,说明效率约为 $ 10^{(6.5-8)/10} \approx 70\% $。
增益可通过多种方法测量:
- 比较法 :使用已知增益的标准天线作为参考;
- 三蚂蚁法 (Three-Antenna Method):利用互易定理测量未知天线间的传输损耗;
- 远场扫描系统 :结合矢量网络分析仪(VNA)与转台自动获取三维增益分布。
以下是几种典型天线的增益范围:
| 天线类型 | 典型增益(dBi) | 效率范围 | 特点 |
|---|---|---|---|
| 偶极子天线 | 2.15 | >90% | 基准天线,无源匹配良好 |
| 四分之一波长单极子 | 0~2 | 50%~80% | 接地依赖性强 |
| 抛物面天线(1m口径,C波段) | 30~40 | >70% | 高增益,体积大 |
| 8元微带阵列(28 GHz) | 18~22 | 40%~60% | 集成度高,损耗大 |
理解 $ D $ 与 $ G $ 的区别对于系统链路预算至关重要。例如,在卫星通信中,地面站天线增益直接影响EIRP(等效全向辐射功率)和G/T值(接收品质因数),必须同时考虑方向性和效率。
4.1.3 输入阻抗、极化纯度与有效带宽评估
天线的 输入阻抗 $ Z_{in} = R_{in} + jX_{in} $ 决定了其与馈线系统的匹配状态。理想情况下,$ Z_{in} $ 应等于系统特性阻抗(通常为50 Ω),此时反射最小,功率传输最大。当存在失配时,会产生电压驻波比(VSWR)升高,导致部分能量被反射回源端,造成发热或前端器件损坏。
输入阻抗可通过矢量网络分析仪(VNA)直接测量S11参数并转换得到:
Z_{in} = Z_0 \frac{1 + \Gamma}{1 - \Gamma}, \quad \text{其中 } \Gamma = S_{11}
实际工程中常以VSWR ≤ 2:1作为可用带宽边界,对应回波损耗RL ≥ 9.54 dB,反射功率小于10%。
极化纯度 指天线发射或接收特定极化波的能力。理想线极化天线只响应同方向极化的入射波,但在现实中总会存在一定交叉极化分量。交叉极化鉴别率(XPD, Cross-Polar Discrimination)定义为主极化与交叉极化信号幅度之比,单位为dB。高XPD有助于提升MIMO系统容量和抗干扰能力。
有效带宽 则综合考虑多个参数的变化容忍度,常见的有:
- 阻抗带宽:VSWR < 2的频率区间;
- 增益波动带宽:增益变化不超过±1 dB的频段;
- 波束稳定性带宽:主瓣偏移小于规定角度的范围;
- 极化纯度带宽:XPD保持高于阈值(如15 dB)的频率跨度。
下表列出某宽带双锥天线在1–6 GHz范围内的关键参数表现:
| 参数 | 1–2 GHz | 2–4 GHz | 4–6 GHz |
|---|---|---|---|
| VSWR | <1.8 | <2.0 | <2.5 |
| 增益变化 | ±0.8 dB | ±1.2 dB | ±1.8 dB |
| XPD | >20 dB | >15 dB | >12 dB |
| 有效带宽判定 | 满足所有指标 | 增益略降 | 仅用于应急通信 |
由此可见,有效带宽往往是多个约束条件交集的结果,而非单一指标决定。
4.2 典型天线类型的建模与分析
针对不同应用场景,工程师发展出多种经典天线结构。每种结构都有其独特的电磁机理和建模方法。掌握这些模型不仅能帮助快速估算性能,还能指导后续仿真与优化。
4.2.1 对称偶极子天线的电流分布与远场积分求解
对称偶极子是最基础的谐振天线,由两段长度各为 $ l $ 的直导线组成,中心馈电。当总长度接近半波长($ 2l \approx \lambda/2 $)时,呈现良好的谐振特性。
其电流分布近似为正弦驻波形式:
I(z) = I_0 \sin\left[k\left(\frac{\lambda}{2} - |z|\right)\right], \quad -\frac{\lambda}{2} \leq z \leq \frac{\lambda}{2}
其中 $ k = 2\pi/\lambda $ 为波数,$ z $ 沿天线轴向坐标。
利用 远场积分法 ,可在球坐标系中求得电场表达式:
E_\theta = j \frac{\eta I_0}{2\pi r} \frac{e^{-jkr}}{\sin\theta} \left[ \cos\left(\frac{k l \cos\theta}{2}\right) - \cos\left(\frac{k l}{2}\right) \right]
该公式揭示了方向图随长度变化的规律。当 $ l = \lambda/4 $(即半波偶极子),方向图呈“8”字形,最大辐射发生在 $ \theta = 90^\circ $ 平面。
下面给出MATLAB代码片段用于绘制半波偶极子方向图:
% 半波偶极子方向图计算
clc; clear;
theta = 0:0.1:2*pi;
lambda = 1; % 归一化波长
k = 2*pi/lambda;
l = lambda/4; % 每臂长度
% 计算E_theta
numerator = cos(k*l*cos(theta)) - cos(k*l);
denominator = sin(theta);
E_theta = abs(numerator ./ denominator);
E_theta(isnan(E_theta)) = 2*l*k; % 处理theta=0处奇点
polarplot(theta, E_theta, 'LineWidth', 2);
title('Half-Wave Dipole Radiation Pattern');
grid on;
逐行解释:
- 第3行:定义角度采样步长为0.1弧度,覆盖完整圆周。
- 第5–6行:设置波数 $ k $ 和臂长 $ l $,确保总长为 $ \lambda/2 $。
- 第8–9行:根据远场公式计算归一化电场强度。
- 第10行:处理 $ \theta = 0 $ 或 $ \pi $ 附近因 $ \sin\theta \to 0 $ 导致的数值溢出问题,采用极限值 $ 2lk $ 替代。
- 第12行:使用极坐标绘图函数生成方向图。
该代码输出结果符合理论预期:水平面全向,垂直面呈双瓣结构,主瓣宽度约78°。
4.2.2 抛物面反射天线的口径场法与增益估算
抛物面天线通过将馈源置于焦点位置,使电磁波经反射后形成平行波束,从而获得极高方向性。其分析常采用 口径场法 (Aperture Field Method),即将反射面开口处的切向场作为等效辐射源进行远场积分。
假设口径电场均匀且线极化,则最大增益可估算为:
G = \eta_a \cdot \frac{4\pi A}{\lambda^2}
其中 $ A = \pi D^2 / 4 $ 为口径面积,$ D $ 为直径,$ \eta_a $ 为口径效率(通常为55%~70%),受遮挡、馈源相位误差和表面粗糙度影响。
例如,一个直径3米的Ku波段(12 GHz)抛物面天线:
\lambda = c/f = 0.025\,\text{m},\quad A = \pi (3)^2 / 4 \approx 7.07\,\text{m}^2
G = 0.6 \times \frac{4\pi \times 7.07}{(0.025)^2} \approx 4.28 \times 10^5 \Rightarrow 56.3\,\text{dBi}
这使其适用于VSAT卫星通信终端。
为提高精度,还需考虑:
- 馈源方向图对口径照度的影响(锥削效应);
- 支撑结构造成的阴影区;
- 表面加工误差引起的相位扰动(RMS误差建议 < λ/16)。
4.2.3 微带贴片天线的传输线模型与边缘场辐射机制
微带贴片天线因其轻薄、易集成、适合批量制造而广泛应用于移动设备与毫米波系统。最常见的是矩形贴片,其工作模式为 $ TM_{10} $,相当于两端开路的四分之一波长谐振器。
采用 传输线模型 ,可将其视为两条长为 $ L $、宽为 $ W $ 的带状线,其间填充介电常数为 $ \varepsilon_r $ 的基板。有效波长为:
\lambda_{eff} = \frac{\lambda_0}{\sqrt{\varepsilon_{eff}}}
其中 $ \varepsilon_{eff} $ 为有效介电常数,近似为:
\varepsilon_{eff} = \frac{\varepsilon_r + 1}{2} + \frac{\varepsilon_r - 1}{2} \left(1 + 12h/W\right)^{-1/2}
谐振长度修正后为:
L = \frac{c}{2f_0 \sqrt{\varepsilon_{eff}}} - 2\Delta L
其中 $ \Delta L $ 为边缘延伸效应,经验公式为:
\Delta L/h = 0.412 \frac{(\varepsilon_{eff}+0.3)(W/h + 0.264)}{(\varepsilon_{eff}-0.258)(W/h + 0.813)}
贴片两侧边缘的非连续性产生垂直于表面的电场分量,成为主要辐射源。上下边缘电场反相,形成沿法线方向同相叠加,构成垂直极化的主瓣。
下表为某2.4 GHz Wi-Fi贴片天线的设计参数:
| 参数 | 数值 | 说明 |
|---|---|---|
| 基板材质 | FR4 | $ \varepsilon_r = 4.4 $ |
| 厚度 $ h $ | 1.6 mm | 标准PCB厚度 |
| 贴片宽度 $ W $ | 30 mm | 控制输入导纳 |
| 贴片长度 $ L $ | 28.5 mm | 经 $ \Delta L $ 修正后 |
| 馈电位置 | 偏心5 mm | 实现50 Ω阻抗匹配 |
通过HFSS仿真可验证其回波损耗在2.4–2.48 GHz内优于-15 dB,增益约6 dBi,满足IEEE 802.11b/g/n标准要求。
flowchart LR
Substrate[介质基板] --> Patch[金属贴片]
Patch --> EdgeField[边缘电场突变]
EdgeField --> Radiation[辐射电磁波]
FeedLine[50Ω微带馈线] --> Match[阻抗匹配区]
Match --> Patch
该流程图清晰表达了微带天线的工作机理:馈线提供能量 → 匹配区调节输入阻抗 → 贴片形成驻波 → 边缘电场向外辐射。
4.3 极化方式及其在通信系统中的影响
极化是电磁波电场矢量在传播方向横截面上的振动轨迹,直接影响信号接收效率和系统容量。
4.3.1 线极化、椭圆极化与圆极化的数学表达
设沿 $ z $ 方向传播的平面波,其电场可分解为:
\vec{E}(t) = \hat{x} E_x \cos(\omega t) + \hat{y} E_y \cos(\omega t + \delta)
- 当 $ \delta = 0 $ 或 $ \pi $,且 $ E_x, E_y $ 同相或反相 → 线极化 ;
- 当 $ \delta = \pm \pi/2 $,且 $ E_x = E_y $ → 圆极化 (右旋/左旋);
- 其余情况 → 椭圆极化 。
右旋圆极化(RHCP)满足 $ \delta = -\pi/2 $,即y分量滞后x分量90°。
圆极化优势在于对抗法拉第旋转和多径反射,常用于卫星导航(GPS使用RHCP)和无人机通信。
4.3.2 极化失配损失计算与交叉极化鉴别率(XPD)
当天线极化与入射波不一致时,发生 极化失配 ,导致接收功率下降。最大传输效率为:
\eta_p = |\hat{e}_a \cdot \hat{e}_w|^2
其中 $ \hat{e}_a $ 和 $ \hat{e}_w $ 分别为天线和入射波的单位极化矢量。
例如,垂直极化天线接收水平极化波时,$ \eta_p = 0 $,完全无法接收。
交叉极化鉴别率(XPD)定义为:
\text{XPD} = 10 \log_{10} \left( \frac{P_{co-pol}}{P_{cross-pol}} \right)
高XPD(>20 dB)表明天线能有效抑制非期望极化成分,有利于频率复用和干扰抑制。
4.3.3 双极化天线在MIMO系统中的部署优势
双极化天线在同一物理结构中集成两个正交极化通道(如±45°斜极化),可在不增加空间占用的前提下实现极化分集。
在MIMO系统中,双极化阵列显著提升信道容量:
C = \log_2 \det \left( I + \frac{\rho}{N_t} H H^H \right)
其中 $ H $ 为信道矩阵,若两极化间相关性低,则行列式值更大,容量更高。
例如,LTE基站广泛采用±45°双极化八木阵列,既节省塔架空间,又支持2×2或4×4 MIMO配置。
4.4 全向与定向天线的应用场景对比
4.4.1 定向天线用于点对点链路的能量集中策略
定向天线通过窄波束将能量集中在特定方向,适用于视距(LoS)通信,如微波接力、无线回传(PtP backhaul)。
优势包括:
- 高增益(>20 dBi),延长传输距离;
- 强抗干扰能力,减少邻道干扰;
- 提升EIRP和接收灵敏度。
典型应用:60 GHz WiGig点对点桥接,使用喇叭天线实现1 Gbps以上速率。
4.4.2 全向天线在蜂窝基站覆盖中的空间均衡设计
全向天线在水平面辐射均匀,适合圆形覆盖区域,如城市宏站或室内分布式天线系统(DAS)。
特点:
- 垂直面波束赋形控制覆盖深度;
- 与机械下倾配合优化小区边缘性能;
- 支持扇区分裂(如三扇区120°配置)。
例如,AMPS模拟蜂窝系统早期即采用全向基站,现代4G/5G则更多使用定向扇区天线以提升频谱复用率。
综上,天线选型需综合考量增益、方向性、极化、带宽与安装条件,方能在复杂电磁环境中实现最优通信效能。
5. 麦克斯韦方程与微波系统工程实践整合
5.1 麦克斯韦方程组在天线辐射问题中的直接应用
麦克斯韦方程组作为电磁场理论的基石,完整描述了电场 $\mathbf{E}$、磁场 $\mathbf{H}$ 与源(电荷密度 $\rho$ 和电流密度 $\mathbf{J}$)之间的动态关系。其微分形式为:
\begin{aligned}
\nabla \cdot \mathbf{D} &= \rho \
\nabla \cdot \mathbf{B} &= 0 \
\nabla \times \mathbf{E} &= -\frac{\partial \mathbf{B}}{\partial t} \
\nabla \times \mathbf{H} &= \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t}
\end{aligned}
在时谐稳态条件下($e^{j\omega t}$ 依赖),可引入复数场量并结合本构关系 $\mathbf{D} = \varepsilon \mathbf{E}, \mathbf{B} = \mu \mathbf{H}$,将上述方程转化为频域形式,进而用于分析天线辐射。
5.1.1 从时变电流源出发推导矢量位A与标量位φ
为简化求解过程,引入磁矢量位 $\mathbf{A}$ 和电标量位 $\phi$,定义如下:
\mathbf{B} = \nabla \times \mathbf{A}, \quad \mathbf{E} = -\nabla \phi - j\omega \mathbf{A}
代入麦克斯韦方程,并采用洛伦兹规范条件 $\nabla \cdot \mathbf{A} = -j\omega \mu \varepsilon \phi$,可得非齐次波动方程:
\nabla^2 \mathbf{A} + k^2 \mathbf{A} = -\mu \mathbf{J}
其中 $k = \omega \sqrt{\mu \varepsilon}$ 为波数。该方程可通过格林函数法求解,在自由空间中得到:
\mathbf{A}(\mathbf{r}) = \frac{\mu}{4\pi} \int_V \frac{\mathbf{J}(\mathbf{r}’) e^{-jk|\mathbf{r}-\mathbf{r}’|}}{|\mathbf{r}-\mathbf{r}’|} dV’
此积分表达式是计算任意电流分布天线辐射场的基础。
5.1.2 近场与远场分离条件下电场与磁场的渐近解
根据观测距离 $r$ 相对于波长 $\lambda$ 和源尺寸 $d$ 的大小,可分为三个区域:
| 区域 | 条件 | 场特性 |
|---|---|---|
| 近场(感应区) | $ r < \lambda $ | 储能为主,场强衰减快($\propto 1/r^2, 1/r^3$) |
| 辐射近场(菲涅尔区) | $ \lambda < r < 2D^2/\lambda $ | 方向图随距离变化 |
| 远场(夫琅禾费区) | $ r > 2D^2/\lambda $ | 平面波近似成立,$\mathbf{E} \perp \mathbf{H} \perp \hat{r}$ |
在远场区,电场可近似为:
\mathbf{E}(r,\theta,\phi) \approx \frac{j\omega\mu}{4\pi r} e^{-jkr} \sin\theta \left( \int_{-\ell/2}^{\ell/2} I(z’) e^{jkz’\cos\theta} dz’ \right) \hat{\theta}
适用于短偶极子或半波偶极子的辐射方向图预测。
5.1.3 偶极子天线辐射场的闭式解验证方向性图样
以中心馈电对称偶极子为例,假设电流呈正弦分布:
I(z) = I_0 \sin[k(\ell/2 - |z|)]
则其远区电场为:
E_\theta = \frac{j60I_0}{r} e^{-jkr} \cdot \frac{\cos(k\ell\cos\theta/2) - \cos(k\ell/2)}{\sin\theta}
下表列出了不同臂长下的主瓣宽度与方向性系数估算值:
| 偶极子类型 | 总长度 | 主瓣宽度(-3dB) | 方向性 $D$ | 输入阻抗(Ω) |
|---|---|---|---|---|
| 短偶极子 | $0.1\lambda$ | ~90° | 1.5 (1.76 dBi) | ~2 - j1800 |
| 半波偶极子 | $0.5\lambda$ | ~78° | 2.15 dBi | 73 + j0 |
| 全波偶极子 | $1.0\lambda$ | ~47° | ~3.8 dBi | ~2000 + j0 |
| 1.5λ 偶极子 | $1.5\lambda$ | 多瓣结构 | 最大增益~5 dBi | 高阻抗,难匹配 |
利用 MATLAB 可绘制归一化方向图:
theta = 0:0.1:2*pi;
l_over_lambda = 0.5; % 半波偶极子
num = cos(pi*l_over_lambda*cos(theta)) - cos(pi*l_over_lambda);
den = sin(theta) + eps; % 防止除零
F = abs(num ./ den);
polarplot(theta, F/max(F));
title('Normalized Radiation Pattern of Half-Wave Dipole');
该方向图呈现典型的“8”字形,最大辐射方向垂直于轴线,验证了理论推导的一致性。
5.2 边界条件在波导与谐振腔分析中的关键作用
5.2.1 理想导体表面切向电场为零的约束应用
在金属边界(如矩形波导内壁)上,满足:
\mathbf{E} \parallel = 0, \quad \mathbf{H} \perp = 0
这一条件限制了可能存在的电磁模态。例如,在矩形波导 $[0,a] \times [0,b]$ 中求解 TE₁₀ 模时,设电场仅有 $E_y$ 分量,且满足亥姆霍兹方程:
\nabla^2 E_y + k_c^2 E_y = 0
结合边界条件 $E_y(x=0)=E_y(x=a)=0$,得解:
E_y(x,z) = E_0 \sin\left(\frac{\pi x}{a}\right) e^{-j\beta z}
对应截止波数 $k_c = \pi/a$,传播常数 $\beta = \sqrt{k^2 - k_c^2}$。
5.2.2 分界面连续性条件求解多层介质结构场分布
在微带线或多层PCB结构中,需保证:
- 切向 $\mathbf{E}$ 和 $\mathbf{H}$ 连续
- 法向 $\mathbf{D}$ 和 $\mathbf{B}$ 连续
考虑空气-介质交界面,若存在表面电荷或电流,则法向 $\mathbf{D}$ 或切向 $\mathbf{H}$ 可能不连续。
5.2.3 矩形谐振腔本征模(TM/TE)的分离变量法求解
设腔体尺寸为 $a \times b \times d$,内部无源。以 TMₘₙₚ 模为例,电场 $E_z$ 满足:
E_z(x,y,z) = E_0 \sin\left(\frac{m\pi x}{a}\right)\sin\left(\frac{n\pi y}{b}\right)\cos\left(\frac{p\pi z}{d}\right)
谐振频率为:
f_{mnp} = \frac{c}{2} \sqrt{ \left(\frac{m}{a}\right)^2 + \left(\frac{n}{b}\right)^2 + \left(\frac{p}{d}\right)^2 }
下表列出几种常见模式的频率(设 $a=22.86\,\text{mm}, b=10.16\,\text{mm}, d=15\,\text{mm}$):
| 模式 | m | n | p | 频率(GHz) |
|---|---|---|---|---|
| TM₁₁₀ | 1 | 1 | 0 | 6.56 |
| TE₁₀₁ | 1 | 0 | 1 | 7.00 |
| TE₂₀₁ | 2 | 0 | 1 | 8.12 |
| TM₁₁₁ | 1 | 1 | 1 | 9.32 |
| TE₀₁₁ | 0 | 1 | 1 | 9.45 |
| TE₁₀₂ | 1 | 0 | 2 | 9.80 |
| TM₂₁₀ | 2 | 1 | 0 | 10.15 |
| TE₁₁₁ | 1 | 1 | 1 | 10.38 |
| TE₂₀₂ | 2 | 0 | 2 | 11.32 |
| TM₂₁₁ | 2 | 1 | 1 | 12.01 |
这些模态可通过 HFSS 仿真提取,并用于滤波器或振荡器设计。
graph TD
A[Maxwell's Equations] --> B[Solve with Boundary Conditions]
B --> C{Structure Type}
C --> D[Antenna: Radiation Field]
C --> E[WG/Cavity: Modal Analysis]
C --> F[Microstrip: Quasi-TEM Mode]
D --> G[Far-field Pattern Prediction]
E --> H[Resonant Frequency & Q-factor]
F --> I[Impedance & Dispersion]
该流程图展示了如何从统一的麦克斯韦框架出发,依据结构差异选择不同的解析路径,最终服务于具体工程设计任务。
简介:《微波技术与天线》是通信工程专业的核心课程,由西安电子科技大学刘学观教授和郭辉萍教授主编,系统讲授微波频段电磁波的传播特性、微波器件设计及天线辐射与接收原理。本资料为该教材配套的课后习题答案,涵盖微波传输线、微波网络分析、史密斯圆图、驻波比计算、谐振器、滤波器、混频器等关键知识点,并深入解析偶极子天线、抛物面天线、微带天线等典型天线结构的设计与性能分析。同时结合电磁场理论与射频系统基础,强化学生对阻抗匹配、馈线设计、噪声系数等实际问题的理解。经过系统训练,学习者可全面提升微波系统建模与天线工程应用能力,适用于通信、雷达、遥感等方向的学习与教学辅助。
919

被折叠的 条评论
为什么被折叠?



