展示 测速_为什么宽带提升到300M,测速却还是100M呢?“中招”的来看一下吧

本文通过网络维修人员的角度,解析了宽带升级到300M但实际测速仍为100M的原因。检查项目包括光纤线路损耗、光猫、千兆路由器、网线及水晶头、电脑网卡等,确保所有设备支持千兆速度。文章提醒用户注意路由器接口、网线质量和电脑硬件配置,以确保达到理想的网速。
摘要由CSDN通过智能技术生成

为什么宽带提升到300M,测速却还是100M呢?“中招”的来看一下吧

随着科技的迅速发展,宽带已经普及了每个家庭,可以说家家户户都有属于自己的网络,而在近两年,随着科技的创新,各大网络运营商逐步将宽带的带宽提升到200M、300M,让用户有更好的网络体验,可在推行之后,很多人表示虽然带宽提升了,但是网速却还是以前的网速呢?下面,王哥以当初从事网络维修人员的身份,给大家解析一下!

4730333d9b76fe31d4c9d14b2e077534.png

千兆路由器

首先检查自己家的光纤线路损耗(这个需要专业设备测量),光衰在-25以下为正常,不会影响你的网速!如果在-26到-30之前建议让维修人员给您修复。光猫的问题我们不用担心,当你更换了套餐之后,网络运营商会“赠送”您千兆光猫,这个是我们不需要担心的, 会有维修人员上门免费安装。

66db094cb392e6d5a29f62b5afcaccb7.png

测量光纤损耗的工具

然后检查自己的路由器是不是千兆路由器,有的路由器只有WAN口是千兆的,但是其下面的LAN口传输的还是百兆口,那样的话路由器下发的网速,肯定是达不到的,只能达到100M,所以在购买路由器的时候,一定要看清楚路由器的参数,不要只听销售人员的片面之词。

d61de81b569f18b83fbefb858e4011c6.png

千兆路由器网口展示

当以上都检查正常之后,如果网速还达不到的话,可以检查你的终端到多媒体箱子里的网线的两端接入的水晶头是否接入了8根,如果只接入4根的话,网速是根本达不到的。如果接入8根的话还达不到,建议更换超5类或者超6类网线。在你更换了超6类网线之后,电脑测试还达不到的话,看一下你的电脑网卡是否是千兆网卡,当一切准备妥当之后,您的网速肯定是能达到标准的。

0afff4028935141605c915245a7fdd37.png

超六类、超五类网线

希望上面的内容可以帮助您解决在宽带测速不达标的问题,在这里王哥建议:不要一味的追求带宽的兆数去更换手机套餐,不管你的宽带是多少兆的,家用是没有任何问题的,在手机套餐不改变的情况下,可以提升带宽的,可以去更改。大家如果有更好的建议的话,可以评论在下方,一起探讨学习。

AI实战-学生生活方式模式数据集分析预测实例(含24个源代码+69.54 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:24个代码,共149.89 KB;数据大小:1个文件共69.54 KB。 使用到的模块: pandas os matplotlib.pyplot seaborn plotly.express warnings sklearn.model_selection.StratifiedShuffleSplit sklearn.pipeline.Pipeline sklearn.compose.ColumnTransformer sklearn.impute.SimpleImputer sklearn.preprocessing.OrdinalEncoder numpy sklearn.model_selection.cross_val_score sklearn.linear_model.LinearRegression sklearn.metrics.mean_squared_error sklearn.tree.DecisionTreeRegressor sklearn.ensemble.RandomForestRegressor sklearn.model_selection.train_test_split sklearn.preprocessing.PowerTransformer imblearn.pipeline.Pipeline imblearn.over_sampling.SMOTE sklearn.ensemble.AdaBoostClassifier sklearn.metrics.accuracy_score sklearn.metrics.precision_score sklearn.metrics.recall_score sklearn.metrics.f1_score optuna scipy.stats torch torch.nn torchvision.transforms torchvision.models torch.optim cv2 glob glob.glob torch.utils.data.DataLoader torch.utils.data.Dataset random.shuffle torch.utils.data.random_split torchsummary.summary matplotlib.ticker pyspark.sql.SparkSession pyspark.sql.functions.count pyspark.sql.functions.max pyspark.sql.functions.min pyspark.sql.functions.avg pyspark.sql.functions.stddev_samp pyspark.sql.functions.skewness pyspark.sql.functions.kurtosis pyspark.sql.functions pyspark.ml.feature.Tokenizer pyspark.ml.feature.VectorAssembler sklearn.preprocessing.LabelEncoder keras.models.Sequential keras.layers.Dense keras.utils.to_categorical ptitprince statsmodels.distributions.empirical_distribution.ECDF statsmodels.stats.outliers_influence.variance_inflation_factor ppscore sklearn.feature_selection.mutual_info_classif sklearn.decomposition.PCA sklearn.model_selection.StratifiedKFold sklearn.tree.DecisionTreeClassifier sklearn.metrics.balanced_accuracy_score sklearn.metrics.confusion_matrix mlxtend.plotting.plot_confusion_matrix scipy.stats.pearsonr scipy.stats.f_oneway sklearn.feature_selection.mutual_info_regression sklearn.feature_selecti
AI实战-信用卡申请风险识别数据集分析预测实例(含9个源代码+91.57 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:9个代码,共44.98 KB;数据大小:1个文件共91.57 KB。 使用到的模块: pandas os matplotlib.pyplot seaborn wordcloud.WordCloud sklearn.model_selection.train_test_split sklearn.preprocessing.LabelEncoder sklearn.ensemble.RandomForestClassifier sklearn.metrics.accuracy_score sklearn.metrics.classification_report sklearn.metrics.confusion_matrix plotly.express plotly.subplots.make_subplots plotly.graph_objects plotly.io sklearn.base.BaseEstimator sklearn.base.TransformerMixin sklearn.preprocessing.StandardScaler sklearn.preprocessing.OrdinalEncoder sklearn.pipeline.make_pipeline sklearn.compose.make_column_transformer imblearn.over_sampling.RandomOverSampler sklearn.svm.SVC sklearn.tree.DecisionTreeClassifier sklearn.ensemble.HistGradientBoostingClassifier sklearn.ensemble.GradientBoostingClassifier sklearn.neighbors.KNeighborsClassifier sklearn.model_selection.GridSearchCV sklearn.ensemble.VotingClassifier torch lightning torchmetrics.Accuracy torch.utils.data.Dataset torch.utils.data.DataLoader numpy warnings matplotlib wordcloud.STOPWORDS collections.Counter sklearn.ensemble.ExtraTreesClassifier sklearn.ensemble.AdaBoostClassifier sklearn.ensemble.BaggingClassifier xgboost.XGBClassifier lightgbm.LGBMClassifier catboost.CatBoostClassifier sklearn.linear_model.LogisticRegression sklearn.model_selection.RandomizedSearchCV sklearn.preprocessing.MinMaxScaler imblearn.over_sampling.SMOTE
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值