什么是分类、聚类,两者的区别

分类是基于已知标签的有监督学习,用于将数据分配到预定义类别,如垃圾邮件过滤。而聚类是无监督学习,根据数据相似性形成簇,无需预先定义类别。
摘要由CSDN通过智能技术生成

分类和聚类都是数据挖掘领域中的常用技术,用于在数据集中识别模式和结构。虽然这两个术语经常被混淆,但它们代表不同的概念。

分类是一种有监督学习技术,它的目的是将数据集中的每个样本分配到预定义的类别中。分类算法依靠已知的标签或类别来训练模型,并在训练后将新数据分配到它们所属的类别中。例如,一个电子邮件垃圾邮件过滤器可以根据电子邮件的内容、附件和其他特征将电子邮件分类为“垃圾邮件”或“非垃圾邮件”。

聚类是一种无监督学习技术,它的目的是根据数据之间的相似性将数据集中的样本分组成簇。聚类算法不需要预先定义类别或标签,而是通过计算样本之间的相似性来识别相似的样本,并将它们分配到相同的簇中。聚类算法可

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值