㊒㊖
码龄6年
关注
提问 私信
  • 博客:10,380
    10,380
    总访问量
  • 暂无
    原创
  • 1,591,013
    排名
  • 1
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:美国
  • 加入CSDN时间: 2018-07-05
博客简介:

weixin_42614592的博客

查看详细资料
个人成就
  • 获得1次点赞
  • 内容获得0次评论
  • 获得11次收藏
创作历程
  • 3篇
    2018年
TA的专栏
  • 机器学习笔记
    1篇
  • 1
  • 深度学习笔记
    1篇
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

182人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

【第十六章】Deep Learning 读书笔记——深度学习中结构化概率模型

16.1 非结构化建模的挑战在深度学习中,我们训练AI模型去理解自然图片,声波代表的演讲,或包含很多单词的文档。这些通常需要深度学习模型将一个高维度的数据作为输入,并将这个输入概括到一个特定的类别。但在类似的分类问题中,模型往往可以不必考虑到输入的所有维度。比如,在图片识别的时候,模型可以忽略点图片中的背景。但是,在概率模型中,我们需要考虑所有的输入以及输入数据的全部结构。这些问题包括:...
翻译
发布博客 2018.09.18 ·
1266 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

【机器学习】笔记之聚类Cluster—— 层次聚类 Hierarchical clustering

本文转载翻译自斯坦福大学出版的 Introduction to Information Retrieval什么是层次聚类Hierarchical clustering?平面聚类是高效且概念上简单的,但它有许多缺点。 算法返回平坦的非结构化簇集合,需要预先指定的簇数目作为输入并且这个数目是不确定的。 分层聚类(或分层聚类)输出层次结构,这种结构比平面聚类返回的非结构化聚类集更具信息性。 分层...
翻译
发布博客 2018.08.27 ·
7032 阅读 ·
0 点赞 ·
0 评论 ·
10 收藏

【机器学习】笔记之聚类Cluster —— 聚类在信息检索中的应用

本文转载翻译自斯坦福大学出版的 Introduction to Information Retrieval博主仍在学习当中,在翻译的过程中,加入了一些个人的理解,欢迎大家积极讨论!集群在信息查询中的一些应用(转载):首先我们先了解一下聚类假说(Cluster hypothesis)。聚类假设说明了我们在信息检索中使用聚类时所做的基本假设,即同一群集中的文档在信息需求的相关性方面表现相似...
翻译
发布博客 2018.08.26 ·
2080 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏