该楼层疑似违规已被系统折叠 隐藏此楼查看此楼
题 目
基于视频的车辆及车道线的检测
课题类型
理论研究□ 工程设计■ 产品开发□ 实验研究□
课题类别
软件 ■ 硬件□
软硬结合□ 其他□
设计内容与技术要求
、
成
果形式
设计内容:
道路上过往车辆每天络绎不绝,时刻安排人力进行监管是费时费力的工作,为此,设计一种基于视频的车辆及车道线的检测方法,实现基于视频智能检测道路上车辆是否压双黄线这一功能,从而有效地节省人力物力。
技术要求:
(1) 根据交通道路黄线的分布特征,合理地采用源于小波变换的划分技术,利用高斯函数的一阶和二阶导数作为小波函数,设计一种简单、有效的手工初始化黄线地带技术,屏蔽与黄线没有关系的背景影像,压缩检测范围,较好的达到实时性需求。
(2) 在对单帧影像的压线鉴别上,提出了源于影像掩蔽的局部对应算法。以无车辆压线的一帧影像作为模板,运用源于影像掩蔽的局部对应算法,将实时抓拍的影像和模板影像的黄线地带实施比较,判定车辆是否压线
成果形式:
要求简单的演示系统,提交相应的程序及论文。
设计进度
2012年
11周-18周,查阅文献,了解课题要求。
2013年
1-2周:进一步查阅相关文献资料,深入理解课题关键内容,完成开题报告。
3-7周:安装vc6.0或vs2010,配置opencv。
7-8周:查阅并翻译与论文有关的英文材料,对小波变换分割道路双黄线等算法进行改善。
9-11周:在opencv上进行基于视频判断车辆压双黄线的智能检测。
12-14周:总结整理相关笔记,撰写并完善毕业论文,准备答辩。
参考资料
[1] 钱大林. 智能交通高级论坛 [J] . 交通运输系统工程与信息, 2001, 3(03): 75-76.
[2] Isard M, Blake A. Condensation-conditional Density Propagation for Visual
Tracking [J] . Int J of Computer Vision, 1998, 29(1): 5-28.
[3] Illingworth H, Kittler J. A survey on the Hough transform [J] . Computer Vis
Graph Image Processing , 1998, 44: 87-116.
[4] 刘道海, 孙作龙等. 图像匹配问题的新算法 [J] . 武汉理工大学学报, 2002, 24 (1): 25-27.
[5] 朱永松, 国澄明. 基于相关系数的相关匹配算法的研究 [J] . 信号处
理, 2003, 19(6): 531-534.
[6] Jane Y, Prabir B. A wavelet-based coarse-to-fine image matching scheme in a
parallel virtual machine environment [J] . IEEE Transactions on Image
Processing, 2000, 9(9): 1547-1559.
[7] 刘瑞祯,于仕琪.OpenCV教程一基础篇 [M]. 北京: 北京航空航大人学出版社, 2007. 6.