c语言设计软件高手,哪有 高手会C语言啊,帮我设计个程序,急急急

该楼层疑似违规已被系统折叠 隐藏此楼查看此楼

题  目

基于视频的车辆及车道线的检测

课题类型

理论研究□ 工程设计■ 产品开发□ 实验研究□

课题类别

软件  ■ 硬件□

软硬结合□ 其他□

设计内容与技术要求

果形式

设计内容:

道路上过往车辆每天络绎不绝,时刻安排人力进行监管是费时费力的工作,为此,设计一种基于视频的车辆及车道线的检测方法,实现基于视频智能检测道路上车辆是否压双黄线这一功能,从而有效地节省人力物力。

技术要求:

(1) 根据交通道路黄线的分布特征,合理地采用源于小波变换的划分技术,利用高斯函数的一阶和二阶导数作为小波函数,设计一种简单、有效的手工初始化黄线地带技术,屏蔽与黄线没有关系的背景影像,压缩检测范围,较好的达到实时性需求。

(2) 在对单帧影像的压线鉴别上,提出了源于影像掩蔽的局部对应算法。以无车辆压线的一帧影像作为模板,运用源于影像掩蔽的局部对应算法,将实时抓拍的影像和模板影像的黄线地带实施比较,判定车辆是否压线

成果形式:

要求简单的演示系统,提交相应的程序及论文。

设计进度

2012年

11周-18周,查阅文献,了解课题要求。

2013年

1-2周:进一步查阅相关文献资料,深入理解课题关键内容,完成开题报告。

3-7周:安装vc6.0或vs2010,配置opencv。

7-8周:查阅并翻译与论文有关的英文材料,对小波变换分割道路双黄线等算法进行改善。

9-11周:在opencv上进行基于视频判断车辆压双黄线的智能检测。

12-14周:总结整理相关笔记,撰写并完善毕业论文,准备答辩。

参考资料

[1] 钱大林. 智能交通高级论坛 [J] . 交通运输系统工程与信息, 2001, 3(03): 75-76.

[2] Isard M, Blake A. Condensation-conditional Density Propagation for Visual

Tracking [J] . Int J of Computer Vision, 1998, 29(1): 5-28.

[3] Illingworth H, Kittler J. A survey on the Hough transform [J] . Computer Vis

Graph Image Processing , 1998, 44: 87-116.

[4] 刘道海, 孙作龙等. 图像匹配问题的新算法 [J] . 武汉理工大学学报, 2002, 24 (1): 25-27.

[5] 朱永松, 国澄明. 基于相关系数的相关匹配算法的研究 [J] . 信号处

理, 2003, 19(6): 531-534.

[6] Jane Y, Prabir B. A wavelet-based coarse-to-fine image matching scheme in a

parallel virtual machine environment [J] . IEEE Transactions on Image

Processing, 2000, 9(9): 1547-1559.

[7] 刘瑞祯,于仕琪.OpenCV教程一基础篇 [M]. 北京: 北京航空航大人学出版社, 2007. 6.

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值