Event representations with tensor-based compositions笔记

Title

Event representations with tensor-based compositions (AAAI 2018)

Summary

提出一种基于张量(tensor)的方法来进行事件表示,可以捕捉event和实体间更subtle的关系,在event-level和scenario-level的语义都有好的效果。并且做了广泛实验(i) a sentence similarity task, (ii) a new hard similarity task, and (iii) an event prediction task (two variants of the narrative cloze),都有不错的效果。

Research Objective

event representations

Problem Statement

提出好的representation应该捕获event-level和scenario-level的语义:

  • event-level:当用完全不同的词汇描述事件时,representation能够学习到它们的相似性。比如,能够识别同义词。
  • scenario-level:当事件中只有个别词汇的区别,导致的事件场景和意思完全不同。比如,she threw a football/ she threw a bomb。并且好的表征应该在相同场景的事件表征相似,不同的则表征不同。

Additive Composition模型和Tensor Composition模型的区别:

  • additive模型:对wordembedding进行concatenation和addition,再输入到神经网络。
  • tensor-based 模型:结合主谓宾来产生最终的事件representation。捕捉乘法的(multiplicative)交互。
  • tensor composition的优势:捕捉事件成分元素的multiplicative interaction,因此能够对小的变化敏感。

Methods

Predicate Tensor Model

在这里插入图片描述
下列式子为事件 e e e的第 i i i个成分 e i e_i ei的representation(其中 s j s_j sj为主语表征, o k o_k ok为宾语表征, P P P为谓语张量):
在这里插入图片描述
谓语张量的构建(其中 p a p_a pa为谓语的embedding, W W W U U U为参数)。在这个模型中,谓词张量由一个共享的基张量 W ∈ R d × d × d W∈R^{d×d×d} WRd×d×d(其中d为输入嵌入维数)导出。为了让谓词的词嵌入影响其结果张量,我们允许W的每个元素(W的每个一维“行”)按依赖于谓词嵌入p的线性函数的值进行缩放, U ∈ R d × d × d U∈R^{d×d×d} URd×d×d决定如何对 p p p进行缩放:
在这里插入图片描述
再将上二式带入一式,得到:
在这里插入图片描述
核心思想:

  • 捕获使用谓词的不同场景或上下文,注意力权重将谓语embedding映射到新的向量空间。
  • 事件embedding由主语元素和宾语元素的乘法之和构成,权重取决于谓语。不断的使用权重来获取事件中主谓宾的关键信息。先是谓语词embedding元素量级的注意力赋值求和后,再是谓语词量级的attention权重赋值。最后事件中谓语(前面处理过)、主语、宾语embedding相乘后累加。

Role Factored Tensor Model

在这里插入图片描述
角色分解张量模型核心:分别以(主语,谓语)(宾语,谓语)对形式处理,再加起来。
优势:比Predicate Tensor Model更少的参数。
张量 v i v_i vi的构建:
在这里插入图片描述
分别以(主语,谓语)(宾语,谓语)处理:
在这里插入图片描述
加权求和,得到最终事件编码:
在这里插入图片描述

Training Task

主要有预测事件和预测word的方法来训练embedding。

Predict Events

能够分辨相似和不相同的事件
损失函数:
在这里插入图片描述

Predict Words

预测一个事件句子上下文附近的词,而不仅仅是事件词
在这里插入图片描述

Experiment

Similarity Evaluations

Transitive Sentence Similarity

使用模型对sentence similarity dataset进行打分。用Spearman’s correlation来检验模型打分与groundtruth标签分数。
数据集例子The transitive sentence similarity dataset (Kartsaklis and Sadrzadeh 2014a) :

  • (design, reduce, amount) and (company, cut, cost)高度相似
  • (wife, pour, tea) and (worker, join, party) 低分数

Hard Similarity Task

作者自己构建的数据集,更加困难的相似句子识别任务。
数据集特性:1)相似的事件,完全不同的表达;2)区别很小的句子,表达完全不同的含义
e.g., police catch robber / authorities apprehend suspect(高度相似) 以及 police catch robber /police catch disease(不相似)

Coherent Multiple Choice Narrative Cloze

完型填空,采用multi-choice narrative cloze (MCNC) (Granroth- Wilding and Clark 2016)并进行修改

Generating Event Schemas

event schema:是script(脚本)的一种形式,可以将事件和实体引入。
以前的工作:使用离散表示,并且进行计数。问题:难以解决同义词和一词多义。
embedding是连续的(continuous),通过embedding space即可发现相似的事件。这种方法简单、可伸缩,并且不需要维护共存信息的大型表。

Nearest Neighbor Schema Generation最近邻模式生成

方法:

  1. 在一个语料库中,用训练好的模型来计算representation
  2. 找出与event seed s s s 最邻近的 k k k个事件event
  3. 对于每一个邻近事件,如果满足以下所有要求,把他们加入schema,并记作 x x x
    • x x x谓词的GloVe embedding与schema中当前所有其他谓词之间的余弦距离大于 α \alpha α (目的:找到新出现的事件类型)
    • 对于任意一个 x x x,如果它的GloVe embedding和schema中实体 e e e的余弦距离小于 β \beta β,用 e e e替代 x x x,生成新的 x ′ x' x (目的:找到新的schema)
    • x ′ x' xembedding与模式中所有其他事件之间的平均余弦距离(使用用于计算原始表示的相同复合函数计算)小于 γ \gamma γ (目的:保证新生成的事件 x ′ x' x类似或者有关联)

以往方法的缺陷:离散计数,倾向于在样式中需要明确的三元组,挖掘语义存在困难。比如(police, found, machete) 和 (authorities, recovered, murder weapon) 是相似的,但以往的方法不可能认定他们之间有关系。

在模型无关的分层强化学习中,学习表示是一项重要的任务。学习表示是指通过提取有用的信息和特征来将观察数据转化为表示向量。这些表示向量可以用于解决强化学习问题中的决策和行动选择。 模型无关的分层强化学习是指不依赖于环境模型的强化学习方法。它通常由两个部分组成:低层控制策略和高层任务规划器。低层控制策略负责实际的行动选择和执行,而高层任务规划器则负责指导低层控制策略的决策过程。 学习表示在模型无关的分层强化学习中起到至关重要的作用。通过学习适当的表示,可以提高对观察数据的理解能力,使得模型能够捕捉到环境中的重要特征和结构。这些表示可以显著减少观察数据的维度,并提供更高层次的抽象,从而简化了决策和规划的过程。 学习表示的方法多种多样,包括基于深度学习的方法和基于特征选择的方法。基于深度学习的方法,如卷积神经网络和循环神经网络,可以通过学习多层次的特征表示来提取环境观察数据的有用信息。而基于特征选择的方法则通过选择最有信息量的特征来减少表示的维度,从而简化了模型的复杂度。 总之,学习表示在模型无关的分层强化学习中起到了至关重要的作用。通过学习适当的表示,模型可以更好地理解观察数据并进行决策和规划。不同的方法可以用来实现学习表示,包括基于深度学习的方法和基于特征选择的方法。这些方法的选择取决于具体任务和问题的需求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值