pytorch学习绪论

1、实现模型训练

数据->模型->损失函数->优化器

数据:如何从硬盘读到内存、组织数据训练、图像预处理和数据增强

模型:如何构建模型模块、组织复杂网络、初始化网络参数(初始化方法有哪些)、网络层定义

损失函数:如何创建损失函数、设置损失函数超参数、选择损失函数(18个)

优化器:如何管理模型参数、管理多个参数组实现不同的学习率、调整学习率(6-7种)

迭代训练:如何观察训练效果、绘制loss(accuracy)曲线,利用tensorboard

应用:图像分类、图像分割、目标检测、对抗生成、循环网络

2、 勤动手、成体系、多总结

3、学习路径

4、学习路线

5、目标


 

©️2020 CSDN 皮肤主题: 数字20 设计师:CSDN官方博客 返回首页