一. 概念
1 . 词的表示
在自然语言处理任务中,首先需要考虑词如何在计算机中表示。通常,有两种表示方式:one-hot representation和distribution representation。
1.1 离散表示(one-hot representation)
传统的基于规则或基于统计的自然语义处理方法将单词看作一个原子符号被称作one-hot representation。one-hot representation把每个词表示为一个长向量。这个向量的维度是词表大小,向量中只有一个维度的值为1,其余维度为0,这个维度就代表了当前的词。例如:苹果 [0,0,0,1,0,0,0,0,0,……]
one-hot representation相当于给每个词分配一个id,这就导致这种表示方式不能展示词与词之间的关系。另外,one-hot representation将会导致特征空间非常大,但也带来一个好处,就是在高维空间中,很多应用任务线性可分。
1.2 分布式表示(distribution representation)
word embedding指的是将词转化成一种分布式表示,又称词向量。分布式表示将词表示成一个定长的连续的稠密向量。
分布式表示优点:
- 词之间存在相似关系:是词之间存在“距离”概念,这对很多自然语言处理的任务非常有帮助。
- 包含更多信息:词向量能够包含更多信息,并且每一维都有特定的含义。在采用one-hot特征时,可以对特征向量进行删减,词向量则不能。
二. 常用的词向量技术操作
1. 用Skip-thought模型训练词向量
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.data as tud
from torch.nn.parameter import Parameter
from collections import Counter
import numpy as np
import random
import math
import pandas as pd
import scipy
import sklearn
from sklearn.metrics.pairwise import cosine_similarity
USE_CUDA = torch.cuda.is_available()
# 为了保证实验结果可以复现,我们经常会把各种random seed固定在某一个值
random.seed(53113)
np.random.seed(53113)
torch.manual_seed(53113)
if USE_CUDA:
torch.cuda.manual_seed(53113)
# 设定一些超参数
K = 100 # number of negative samples
C = 3 # nearby words threshold
NUM_EPOCHS = 2 # The number of epochs of training
MAX_VOCAB_SIZE = 30000 # the vocabulary size
BATCH_SIZE = 128 # the batch size
LEARNING_RATE = 0.2 # the initial learning rate
EMBEDDING_SIZE = 100
LOG_FILE = "word-embedding.log"
# tokenize函数,把一篇文本转化成一个个单词
def word_tokenize(text):
return text.split()
with open("text8.train.txt", "r") as fin:
text = fin.read()
text = [w for w in word_tokenize(text.lower())]
vocab = dict(Counter(text).most_common(MAX_VOCAB_SIZE-1))
vocab["<unk>"] = len(text) - np.sum(list(vocab.values()))
idx_to_word = [word for word in vocab.keys()]
word_to_idx = {
word:i for i, word in enumerate(idx_to_word)}
word_counts = np.array([count for count in vocab.values()], dtype=np.float32)
word_freqs = word_counts / np.sum(word_counts)
word_freqs = word_freqs ** (3./4.)
word_freqs = word_freqs / np.sum(word_freqs) # 用来做 negative sampling
VOCAB_SIZE = len(idx_to_word)
VOCAB_SIZE
结果:
30000
2. 实现Dataloader
一个dataloader需要以下内容:
- 把所有text编码成数字,然后用subsampling预处理这些文字。
- 保存vocabulary,单词count,normalized word frequency
- 每个iteration sample一个中心词
- 根据当前的中心词返回context单词
- 根据中心词sample一些negative单词
- 返回单词的counts
为了使用dataloader,需要定义以下两个function:
- len function需要返回整个数据集中有多少个item
- get 根据给定的index返回一个item
有了dataloader之后,可以轻松随机打乱整个数据集,拿到一个batch的数据等等。
class WordEmbeddingDataset(tud.Dataset):
def __init__(self, text, word_to_idx, idx_to_word, word_freqs, word_counts):
''' text: a list of words, all text from the training dataset
word_to_idx: the dictionary from word to idx
idx_to_word: idx to word mapping
word_freq: the frequency of each word
word_counts: the word counts
'''
super(

本文介绍了在自然语言处理中,如何使用one-hot和distribution representation两种方式表示词,重点讲解了词向量(word embedding)的分布式表示及其优点。通过Skip-thought模型训练词向量并实现了一个PyTorch模型,展示了如何在MEN和Simplex-999数据集上评估模型性能,以及找到单词间的相似度关系。
最低0.47元/天 解锁文章
544

被折叠的 条评论
为什么被折叠?



