今天给大家推荐一个好挖创新点的研究方向:多元时间序列。
多元时间序列是我们解决复杂系统分析和预测问题的重要工具。它通过综合分析多个相关时序数据,可以给我们提供更精准的预测结果,非常适合处理涉及多个变量和多个时间点数据的场景,比如交通预测、金融市场分析等,因此拥有广泛的应用范围,创新潜力十分可观。
比如川大、港科大、北理工联合发表的多元时间序列预测新工作MSGNet,使用频域分析和自适应图卷积捕获多个时间尺度上的变化序列间相关性,性能超越时序分析五边形战士TimesNet。
除此之外,今年多元时间序列相关的研究新进展也有不少,我简单整理了15篇给同学们作参考,开源代码已附,方便各位复现。
论文原文以及开源代码需要的同学看文末
MSGNet: Learning Multi-Scale Inter-Series Correlations for Multivariate Time Series Forecasting
方法:本文介绍了一种新的深度学习模型MSGNet,MSGNet的关键组成部分包括:尺度学习和转换层、多重图卷积模块和时间多头注意力模块。通过频域分析和自适应图卷积来捕捉不同时间尺度上的不同序列之间的相关性。MSGNet在5个数据集上实现了最佳性能,在2个数据集上实现了次佳性能。在Flight数据集上,MSGNet超过了当前的最佳模型TimesNet。