还记得一夜爆火的KAN吗?
KAN的核心特点是把激活函数放在权重上并参数化为样条曲线,让它具有灵活的函数拟合能力和一定的可解释性,以便更好地处理和捕捉时间序列中的复杂关系与非线性模式,帮助我们更全面地分析和预测时间序列数据。
因此KAN非常适合作为时间序列预测的创新点,而且它是最新提出的模型,目前用的人很少,不过KAN单独使用会存在训练速度慢等问题,所以现在的主流思路是结合其他模型(比如LSTM、注意力机制等)加上个优化方法做创新。
为帮助同学们快速了解这个创新方向,我根据以上思路整理了8个最新发表的KAN+时间序列预测论文给各位做案例参考,有开源代码的都附上了,建议想发论文的同学仔细研读。
论文原文+开源代码需要的同学看文末
Kolmogorov-Arnold Networks (KANs) for Time Series Analysis
方法:本论文介绍了Kolmogorov-Arnold网络(KANs)在时间序列预测中的新应用,利用其自适应激活函数来增强预测建模。受Kolmogorov-Arnold表示定理的启发,KANs用样条参数化的单变量函数代替传统的线性权重,使其能够动态学习激活模式。


最低0.47元/天 解锁文章
845

被折叠的 条评论
为什么被折叠?



