发论文创新点来了!KAN+时间序列预测,更高性能表现、更低资源占用

还记得一夜爆火的KAN吗?

KAN的核心特点是把激活函数放在权重上并参数化为样条曲线,让它具有灵活的函数拟合能力和一定的可解释性,以便更好地处理和捕捉时间序列中的复杂关系与非线性模式,帮助我们更全面地分析和预测时间序列数据。

因此KAN非常适合作为时间序列预测的创新点,而且它是最新提出的模型,目前用的人很少,不过KAN单独使用会存在训练速度慢等问题,所以现在的主流思路是结合其他模型(比如LSTM、注意力机制等)加上个优化方法做创新。

为帮助同学们快速了解这个创新方向,我根据以上思路整理了8个最新发表的KAN+时间序列预测论文给各位做案例参考,有开源代码的都附上了,建议想发论文的同学仔细研读。

论文原文+开源代码需要的同学看文末

Kolmogorov-Arnold Networks (KANs) for Time Series Analysis

方法:本论文介绍了Kolmogorov-Arnold网络(KANs)在时间序列预测中的新应用,利用其自适应激活函数来增强预测建模。受Kolmogorov-Arnold表示定理的启发,KANs用样条参数化的单变量函数代替传统的线性权重,使其能够动态学习激活模式。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值