看了前几天刚发表的YOLOv12,深感YOLO研究之热,这迭代速度也太快了...不过往好处想,也说明YOLO相关的研究需求非常旺盛,属于SCI常客,再加上YOLO在自动驾驶、机器人导航等领域的广泛应用,用它发论文还是比较容易的。
关于YOLO的创新,现在比较流行的有新模块设计(如引入Mamba)、损失函数优化(如CIoU)、端到端改进(如YOLOv10的NMS-Free设计)。针对现有的工业需求和未来发展趋势,我们也可以从模型轻量化、多模态融合、部署优化等实际问题角度进行探索。
如果大家想发论文,建议先从上述主流(如新模块设计)入手,参考多资源也多,入门轻松。我这边整理了24篇YOLO相关论文,可作参考,包含YOLO前沿创新方案以及系列原文+代码,大家有需要自取。
全部论文+开源代码需要的同学看文末
YOLOv12: Attention-Centric Real-Time Object Detectors
方法:研究介绍了YOLOv12,通过结合注意力机制和残差高效层聚合网络(R-ELAN)改进YOLO框架,在提升特征聚合的同时,显著改善了实时物体检测的准确性和效率,挑战了传统基于CNN的YOLO设计,并通过消融研究验证这些创新的有效性。
创新点:
-
区域注意力模块:通过简化计算,减少注意力机制的复杂度,同时保持大感受野,提升检测速度和精度。
-
通过残差连接和改进的特征聚合方法,解决优化问题,减少计算量和参数量,提高模型稳定性。
-
采用FlashAttention等技术,移除冗余设计,优化计算资源分配,进一步提升效率和精度。
+注意力机制
ASF-YOLO: A novel YOLO model with attentional scale sequence fusion for cell instance segmentation
方法:论文提出了一种基于YOLO的细胞实例分割模型ASF-YOLO,通过引入SSFF和TFE模块增强多尺度特征融合,并结合CPAM注意力机制提升小目标检测和分割性能,显著优于现有方法。
创新点:
-
SSFF 模块通过三维卷积处理多尺度特征,提高对象分割效果。
-
TFE 模块融合多尺寸特征图,捕捉小对象的精细空间信息。
-
ASF-YOLO 整合 SSFF 和 TFE,实现自适应关注,在小对象实例分割上优于 YOLOv5。
+Mamba
DS MYOLO: A Reliable Object Detector Based on SSMs for Driving Scenarios
方法:论文提出了一种名为DS MYOLO的目标检测器,基于YOLO架构并融合了Mamba的全局选择性扫描机制,通过SimVSS模块和ECAConv实现全局特征融合与通道交互,显著提升了检测性能。
创新点:
-
引入了一种实用的解耦头和无NMS设计,能够有效解码输入中的小、中、大目标,实现不同尺度下的高效检测。
-
在PAFPN的基础上,通过ECACSP集成局部特征,增强了模型的特征提取能力。
-
在实验中采用了从零开始训练的策略,使用了SGD优化器和特定的学习率衰减以及动量设置。
+多尺度特征融合
YOLO-MIF: Improved YOLOv8 with Multi-Information fusion for object detection in Gray-Scale images
方法:论文提出了YOLO-MIF模型,通过引入伪多通道灰度图像输入策略、网络结构重参数化技术和新颖的检测头设计,解决灰度图像在对象检测中的辨识度低、噪声和亮度不均问题。
创新点:
-
通过创建伪多通道灰度图像,增加网络的通道信息,降低图像噪声和失焦模糊的问题。
-
提出了一种新的多分支结构和重参数化技术(如WDBB模块),用于增强网络骨干和检测头的性能。
-
针对灰度图像的输入提出了一种新的策略,减少预处理时间,同时通过数据增强等技术生成三通道伪彩色图像。
关注下方《学姐带你玩AI》🚀🚀🚀
回复“YOLO创新”获取全部方案+开源代码
码字不易,欢迎大家点赞评论收藏