552. 学生出勤记录 II 超简单的理解思路 击败88.57

文章描述了一种通过动态规划方法解决特定问题的过程,即计算给定长度n的序列中,允许有一个A元素的排列总数。作者通过举例n=4展示了如何利用dp数组排除冗余情况,最终得出dp[n]=dp[n-1]+dp[n-2]+dp[n-3]的规律。

大类只有2种情况 (1)无A :dp[n]种 . (2)有1个A: d[j-1]*dP[n-j],注意j=1,2,3,…,n。(dp[n]代表n个字符中没有A可以有多少种情况。)
此时无A的情况,只用考虑P和L的的排列。初始化dP[0]=1, dP[1]=2,dP[2]=4,n<=2时候显而易见,因为L的情况不用管!!!

现在难点是:如何排除3个L的情况!!!

以n=4为例子 :那么对于第1个元素,可以是P可以是L,如果是P就好办了(直接dp[3]),如果是L呢?

  • P[]: dp[3]
  • LP[] :第1个是L,第2个可以是P,那么也好办,直接dp[2],因为后面就2个元素
  • LLP[] :第2个如果是L呢?也好办,第3个一定是P,直接dp[1]。

好了,已经发现规律了,dp[n]=dp[n-1]+dp[n-2]+dp[n-3];
最后(1)和(2)加起来就是答案了。

class Solution {
    public int checkRecord(int n) {
        if(n==1)return 3;
        long []dp = new long[n+1];
        dp[0] = 1;
        dp[1] = 2;
        dp[2] = 4;
        long MOD = 1000000007;
        for(int i=3;i<=n;i++){
            dp[i] = ((dp[i-1] + dp[i-2])%MOD +dp[i-3])%MOD;
        }  
        long res = 0;

        //有1个A
        for(int i=1;i<=n;i++){
            long tmp = (dp[i-1]*dp[n-i])%MOD;
            res = (res+tmp)%MOD;
        }
        res = (res+dp[n])%MOD;
        return (int)res;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值