梯度下降方法Adam: RMSProp + Momentum、以及warm up方法

本文探讨了深度学习中的关键概念,如critical point和saddle point,如何影响梯度行为。介绍了如何通过Adagrad和Adam方法避免二次微分成本,以及学习率更新策略,包括warmup的概念。特别提到了梯度爆炸问题及其解决方案。视频资源提供详细解释和实操演示。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述
当到达critical point或者saddle point,loss不再下降时,gradient应该为0,但不为0

在这里插入图片描述
到达critical point或者saddle point很难

在这里插入图片描述
更新learning rate的一种方法:
在这里插入图片描述
更新learning rate
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

视频:
https://www.bilibili.com/video/BV1Ht411g7Ef?p=6

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
最好的step=(一次微分)/(二次微分),但因为求二次微分代价比较大,所以会有例如adagrad这样的梯度下降方法避免求二次微分

另一种方法:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
梯度下降的方法——Adam
在这里插入图片描述
在这里插入图片描述
在垂直方向上gradient很小,垂直方向上step近似等于0,累积一段时间后,很小的σ被除,产生梯度爆炸

在这里插入图片描述
在这里插入图片描述
为什么要用warm up?
因为刚开始不知道用多大比较好,所以需要从小的learning rate学起
在这里插入图片描述

总结:在这里插入图片描述

视频:
https://www.bilibili.com/video/BV1JA411c7VT?p=7

PyTorch学习之6种优化方法介绍

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值