Algo_进制原理、k进制、特殊进制

Base

对于一个最常用的10进制的数字来说: 10234
   如果我们需要得到他每一个位的数字,我们会熟练的写出下面这个代码:
while(a>0){ V.PB( a%10 ); a/=10; }
这个代码可以得到a这个数字,从低位到高位的每个数字
数字是介于[0, 9]之前的, 因为这是10进制的数字

 ' 这个看似很简单的代码,其实里面蕴含了很多的道理.... '
num  =  1  0  2  3  4
bit  =  4  3  2  1  0
问题1:   我们执行a/=10,这是在干嘛呢?
	' 将a这个数字,的最低位bit,“消失掉”!! '
	注意,“消失掉”一词 要着重理解!!
	他和( st >>= 1 )是一个道理
	st = a b c     ->(消失掉)->    st = a b
问题2:   对于某一bit位,他上面的数字 代表着什么呢??
	比如对于bit[4] = 3, 他代表 30000
	而这个30000<0的个数,取决于bit是第几位>
	根据当前的bit,你可以得到一个poww(比如bit=4,则poww=10^4' 这个poww的含义是: 这个bit位上的数字,+1 / -1所带来的收益 '
	当前bit=4位上的数字 从3变成4,自然这个数字 就会增大poww=10^4
' 这两个问题,在10进制下 很容易理解,但 却是很重要的原理!! '

比如对于k进制,(k=3)
k=3进制的数字:   000, 001, 002, 010, 011, 012, 020, 021, 022
hash映射后:        0, 1  , 2  , 3  , 4  ,  5 , 6 ,  7 ,  8
  我们发现,对于任何k进制的数字,他都可以进行(hash映射)后
    得到一个' 10进制 '的数字,可以用来唯一的标识这个k进制的数字
 ' 且,这是一个(有序hash)的过程 '
 即,hash后对应的10进制数字的大小关系 和 原k进制数字的大小关系,是一致的
 当然,这个(hash后的10进制数字),就是这个k进制对应的10数字
 之所以引入hash这个概念,是为了下面说明 k进制问题在算法方面应用

我们看任何一个k=3进制的数字0000022,假如我们要对他记录一个val值
即 mp[ 0000022 ] = xx_val 这件事情。
1, 用string/VE<int>来存0000022, 这显然效率不行
2, 直接用int来存0000022(即直接对应int=22这个数字)
	这当然是可行的(前提是你这个k进制的数字,要<= int/LL)
	' 但是: 如果是dp问题,你用数组肯定是存不了的 '
 	' 而且, 如果涉及到(加减法操作),比如: 00022 + 1 = 00100 '
 	' 你这种方法,的时间, 并不是O(1)的 '
 	当然,如果不涉及加减法 只是map记录,这种方式是可以的
 	但通常我们并不这样使用,比如对于常用的二进制来说
 	我们要存入:mp[10001101...(22)] = xx
 	  用这种方式的话, (10^22)是比LL还要大的。
 	  而,这个数字 对应的10进制, 不过才10^6左右。
3, 有序hash
k=3进制的数字:   000, 001, 002, 010, 011, 012, 020, 021, 022
hash映射后:        0, 1  , 2  , 3  , 4  ,  5 , 6 ,  7 ,  8
  ' 即00022这个3进制数字,并不用(int=22)来映射,而是用(int=8)来映射 '
  1, 从k进制  获取  hash
	k进制数字 = [a, b, c]
	hash = a * k^2   +   b * k   +   c
  2, 从hash  获取   k进制
  	while(hash > 0){   V.PB( hash % k );  hash /= k;  }  
 我们来比较下,这种方式 和 上面的2方式,有哪些优劣。
 1, hash  和  k进制,之间的互转, 时间是一样的,都是O(n)  {n为k进制数字的长度}
 2' 当涉及到 加减操作时, 两者就不同了 '
 	因为我们平时存储的/操作的 对象,并不是这个k进制,而是这个hash值
 	假如说,我们要进行: += sub 的操作。 
 	I:  2方式的时间是O(n)的 (而且很复杂,你需要从低位开始,模拟加减法运算规则)
	II:  但这种方式,时间是O(1)的:  直接hash += sub即可!!!
	      非常简单!!!

' 这其实就是: 状压dp问题。 (状压dp不一定是2进制,也可以是k进制) '
  最优秀的办法,就是使用3方式(即用该k进制对应的10进制数字,来hash)

比如对于一个k=3进制的问题(一般都是 状压dp问题) n = 4,即[] [] [] [][0,0,0,0][2,2,2,2]  (ma = 2 + 2*3 + 2*3*3 + 2*3*3*3 = 80)
即对应dp为[80][xx]
for(st = 0; st <= 80; ++st){
	int temp = st;
	FOR(i, 0, 3, 1){
		int cur_bit = temp % 3;  ' 得到st对应的k进制的每一位 '
		temp /= 3;		' cur_bit也可以通过: st / poww[i] % 3 来获取 '
		for(xx){
			int pre_st = st - (cur_bit * poww[i]);
		}
	}
}

特殊进制(重要!)

但如果对于一个“特殊进制”问题,即他不是k进制,但和进制又非常类似

首先,我们回顾k进制问题, st = [] [] [] [],  其中每一个[] 都是介于[0, k-1]之间的
 ' 也就是: 我给你一个(数组):[] [] [] ...,其中的每个[] 都是介于[0, k-1] '
 '           这便是: k进制的一个数!!!  '
 '  注意,其中每个[] 都是[0, k-1]之间的,不是[0,9],此时和10进制没有任何关系!!! '
 '   这是对所有数字的统一规范的表达!! '
 '     比如对于16进制,即是:   [0-16]  [0-16] .. [0-16]   '
 '				只不过由于占位问题, 把10-16,用了字母来表示  '

但假如我给你一个(数组):  [0-x]  [0-y]  [0-z]
	' xyz各不相同(如果相同,就变成了k进制问题) '
比如是: [0-2]  [0-3]  (假如右侧是低位)
这个(特殊进制数组):     	     [0,0]  [0,1]  [0,2]  [1,0]  [1,1]  [1,2]
hash(其实就是对应的10进制数):    0	  1      2      3      4      5
 ' 可以看到:  他和普通的k进制问题,其实是完全一样的 '
  只不过,k进制是: 每一位都是逢k就进位, 而这里是: 每一位也是逢k进位 但不同的bit 其k值不同
比如以:    [0-2]      [0-3]      [0-4][0-4]的意思是: 逢5进位)
poww:       12         4          1      'poww的意思是: 当前位+1,能带来多少收益 '
 (他一共有3*4*5个数, 所对应的10进制 即hash值为[0, ..., 3*4*5 - 1]之间)
for(st, 0, 3*4*5 - 1, 1){
	for(i, 0, 2, 1){
		int cur_bit = st / poww[i] % ma[i];     ' ma[i]就对应k进制中的k,这里是3/4/5 '
	} ' 当st=3*4*5 - 1时,得到的cur_bit为: [2, 3, 4] '
}

此时有个非常重要的问题:  (xyz是可以为0的!!!)
比如:      [0-3]    [0-2]    [0-0]    (ma分别为:[4, 3, 1][0,0,0]  [0,1,0]  [0,2,0]  [1,0,0]  [1,1,0]  [1,2,0]
' 即ma是可以为1的, 此时最后一位 始终为0。 相当于k=1进制的数,始终为0 '

比如对于st=1,你可能会认为他是冲突的(因为ma[0]=1,而st=1是否需要进位呢? )
比如: [0-1] [0-0] [0-0] [0-0],   poww = [1, 1, 1, 1], ma = [2, 1, 1, 1]
原数: [0,0,0,0]  [1,0,0,0]
st:       0          1
 
 ' 即,st=1 并不是说,他和ma[0/1/2]=1冲突,从而导致进位 '
 '     甚至你可能会想, st=3  此时> ma[0/1/2]=1,这是什么情况呢? '
 '  	 按说,不是逢k进位,这里st>=k 是什么情况呢?  '
 这些都是错误的想法。   st是个10进制的数,他和原数[][][] 只是一个对应映射的关系
 当然,也可以理解为:  st=3 ->  对应为: [0,0,0] + 3


常用的应用场景是:   状压dp
	n为数的长度[0][1]...[n-1],每个数比如[1] 他有个范围比如是[0-3],则ma[1]=4(即逢4进位)
int ma_num = 1;
FOR(i, 0, n-1, 1){
	ma_num *= ma[i];   '  注意,ma[i]可以为1!!! 即该bit位 始终为0 '
	if(i == 0) poww[i] = 1;
	else	poww[i] = poww[i-1] * ma[i-1];  ' 注意,是ma[i - 1],不是ma[i] '
} ' poww[i]表示:  i这个bit位,上的数字,+1,可以带来poww[i]的收益 '
-- ma_num;   ' 即所有状态是: [0, 1, ..., ma_num]
int dp[ma_num][xx];   'ma_num 即为状压dp的状态'
for(st, 0, ma_num, 1){   ' st就表示了一个: 长为n的 (特殊进制)的数字 '
	' 比如st对应的数组是: [2, 0, 1], 则pre_st对应的数组为:[1,0,1] [2,0,0] '
	'   我们的任务是: 找到这2个pre_st。 即遍历所有的bit位,枚举这位数字-=1,其他位不变 '
	FOR(i, 0, n-1, 1){
		int cur_bit = st / poww[i] % ma[i];
		if(cur_bit > 0){ ' 当前位>0,才可以-=1 '
			int pre_st = st - poww[i];
			FOR(xx){
				MAX( dp[st][xx],  dp[pre_st][xx] );
			}
		}
	}
}




  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值