研究背景
交换耦合之间的竞争是Heisenberg模型中产生非共线自旋配置的已知机制。我们讨论了两种不同情况。首先,考虑基平面上的竞争耦合,例如NiBr2家族化合物的情况。零温度相图可以经典近似直接获得,并且我们已经证明,在参数空间中两个不同螺旋配置之间的边界线上,当转变不是一级相变时,会出现有趣的新现象。基态具有无限退化,对应于位于倒易空间中的一条线上的不等价螺旋波矢量Q,我们称之为“退化线”。这条线也是“软线”,即自旋波能量为零。在上述提及的边界线上,由于软线引起的波动增加,在三维中任何有限温度下长程秩序(LRO)都不存在,甚至在二维中零温度下也是如此。三维中的对数发散表明存在一种非常规的低温相,我们称之为“各向同性螺旋”,没有LRO但具有代数衰减的相关性,螺旋波矢量在无限多的基态中局部波动。这种退化线在适当的三个平面内交换积分J1、J2、J3值下存在于四方、三角、六角和菱面体晶格中。关于进一步的相互作用,如更远的邻近相互作用或单离子平面各向异性,对上述描述的行为的稳定性提出了有趣的问题。
研究主旨
本文探讨了Heisenberg模型中螺旋磁性的新特性与旧机制,特别是在基平面内耦合竞争和沿晶格轴的竞争情况下。研究发现,基态的无限退化和软线现象影响了系统在低温下的行为,可能导致各向同性螺旋相的存在,而进一步的相互作用,如更远的邻近相互作用或单离子平面各向异性,可以改变这些特性,包括破坏软线和引起第一阶相变。
研究特点
在Heisenberg模型中,交换耦合的竞争是导致非共线自旋配置的众所周知的机制。本文讨论了两种不同的情况:首先,考虑基平面内耦合竞争的情况,如NiBr2家族化合物;其次,为了研究量子效应和螺旋波矢量(Q)在螺旋磁性中的热演化,我们考虑了一个更简单的模型,其中竞争仅沿一个晶格轴存在。

被折叠的 条评论
为什么被折叠?



