逻辑回归的交叉熵损失函数求导
定义的交叉熵损失函数为:
J(θ)=−1m∑i=1my(i)log(hθ(x(i)))+(1−y(i))log(1−hθ(x(i))) J(\theta)=-\frac{1}{m} \sum_{i=1}^{m} y^{(i)} \log \left(h_{\theta}\left(x^{(i)}\right)\right)+\left(1-y^{(i)}\right) \log \left(1-h_{\theta}\left(x^{(i)}\right)\right) J(θ)=−m1i=1∑my(i)log(hθ(x(i)))+(1−y(i))log(1−hθ(x(i)))
其中:
loghθ(x(i))=log11+e−θTx(i)=−log(1+e−θTx(i))log(1−hθ(x(i)))=log(1−11+e−θTx(i))=log(e−θTx(i)1+e−θTx(i))=log(e−θTx(i))−log(1+e−θTx(i))=−θTx(i)−log(1+e−θTx(i)) \log h_{\theta}\left(x^{(i)}\right)=\log \frac{1}{1+e^{-\theta^{T} x^{(i)}}}=-\log \left(1+e^{-\theta^{T} x^{(i)}}\right)\\ \log \left(1-h_{\theta}\left(x^{(i)}\right)\right)=\log \left(1-\frac{1}{1+e^{-\theta^{T} x^{(i)}}}\right)=\log \left(\frac{e^{-\theta^{T} x^{(i)}}}{1+e^{-\theta^{T} x^{(i)}}}\right)\\ =\log \left(e^{-\theta^{T} x^{(i)}}\right)-\log \left(1+e^{-\theta^{T} x^{(i)}}\right)=-\theta^{T} x^{(i)}-\log \left(1+e^{-\theta^{T} x^{(i)}}\right) loghθ(x(i))=log1+e−θTx(i)1=−log(1+e−θTx(i))log(1−hθ(x(i)))=log(1−1+e−θTx(i)1)=log(1+e−θTx(i)

本文详细介绍了逻辑回归的交叉熵损失函数,并通过数学推导展示了其求导过程,最终得到了损失函数关于参数的梯度表达式。这有助于理解逻辑回归模型的优化原理。
最低0.47元/天 解锁文章
1819

被折叠的 条评论
为什么被折叠?



